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We propose a novel definition of binders using matching logic, where the binding behavior of object-level
binders is directly inherited from the built-in ∃ binder of matching logic. We show that the behavior of binders
in various logical systems such as 𝜆-calculus, System F, 𝜋-calculus, pure type systems, can be axiomatically
defined in matching logic as notations and logical theories. We show the correctness of our definitions by
proving conservative extension theorems, which state that a sequent/judgment is provable in the original
system if and only if it is provable in matching logic, in the corresponding theory. Our matching logic definition
of binders also yieldsmodels to all binders, which are deductively complete with respect to formal reasoning in
the original systems. For 𝜆-calculus, we further show that the yielded models are representationally complete,
a desired property that is not enjoyed by many existing 𝜆-calculus semantics. This work is part of a larger effort
to develop a logical foundation for the programming language semantics framework K (http://kframework.org).
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1 INTRODUCTION

In this paper, we propose a novel definition of binders using matching logic [Chen and Roşu 2019;
Roşu 2017], where the binding behavior of object-level binders is directly inherited from the built-in
∃ binder of matching logic. An appealing aspect of our definition is that it automatically yields
models to all binders. Therefore, it is interesting and motivating to define a logical system that
features binding in matching logic, because it allows us to study the resulting model theory and
properties, in addition to the proof theory. We define 𝜆-calculus [Church 1941], System F [Girard
1972; Reynolds 1974], pure type systems [Barendregt 1993], and 𝜋-calculus [Milner et al. 1992]
in matching logic as theories and prove the correctness of definitions as conservative extension
theorems (Theorems 36 and 49). We also show that the models that matching logic yields for these
theories are deductively complete with respect to formal reasoning in each of the respective systems
(Sections 7 and 9.2). For 𝜆-calculus, we show that the corresponding matching logic models are also
representationally complete for all 𝜆-theories, a desired property that is not known to hold for many
existing 𝜆-calculus semantics [Berry 1978; Bucciarelli and Salibra 2004; Engeler 1981; Girard 1986;
Krivine 1993; Plotkin 1972; Schellinx 1991; Scott 1972, 1975a,b] (see discussion in Section 8.2.2).
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88:2 Xiaohong Chen and Grigore Roşu

We use 𝜆-calculus as an example to illustrate our definition of binders in matching logic. We
define 𝜆-abstraction, 𝜆𝑥. 𝑒 , as the following matching logic formula (called pattern; see Definition 2):

𝜆𝑥 . 𝑒 ≡ lambda (intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩) (1)
Intuitively, ⟨𝑥, 𝑒⟩ builds an argument-value pair; ∃ is the built-in binder in matching logic that thus
creates the binding of 𝑥 to 𝑒 ; ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ builds the set-theoretic union of all argument-value pairs
⟨𝑥, 𝑒⟩, as 𝑥 ranging over all variables of sort Var ; this union set is called the graph of the function
𝑥 ↦→ 𝑒 , which is then łpackedž by the operator intension into an object and passed to lambda.
Finally, lambda decodes/retracts the packed object and returns the intended interpretation of 𝜆𝑥. 𝑒 .
Binders in the other systems may require different retracts other than lambda, but all take the same
packed object as argument, which for convenience we write [𝑥 :Var] 𝑒 ≡ intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩.

The main goal of this paper is to show that the matching logic definition of binders as illustrated
in Eq. (1), is mathematically interesting and can serve as a foundation of binders in language
frameworks. In Section 2, we start with a discussion on the major existing approaches to dealing
with binders and we compare them with our approach. Then we make the following contributions:

• We propose a novel functional variant of matching logic that is more suitable to capture
binders, and we comprehensively study its model theory (Section 3); we demonstrate the
expressiveness of this functional variant of matching logic by defining several important
mathematical instruments (such as equality and sorts) as theories and notations (Section 4);

• We define 𝜆-calculus (Section 5) as a theory in matching logic (Section 6), as an illustrative
case study. Then we prove the conservative extension theorem for 𝜆-calculus and show that
matching logic yields complete models, in terms of deduction, for 𝜆-calculus (Sections 7-8).
We also discuss the representability problem in 𝜆-calculus and show that matching logic
yields models that are representationally complete, in Section 8.2.2;

• We generalize our method to arbitrary binders (Section 9).

Finally, we conclude the paper with future work in Sections 10-11.
This paper marks an important step towards formalizing the logical foundation of the K semantic

framework (http://kframework.org), which has been used to define complete formal semantics
of several real-world languages [Bogdănaş and Roşu 2015; Dasgupta et al. 2019; Hathhorn et al.
2015; Hildenbrandt et al. 2018; Park et al. 2015]. Prior attempts have been made to propose a logical
foundation of K using formalisms like rewriting logic [Meseguer and Roşu 2013; Roşu and Şerbănuţă
2010] and graph rewriting [Şerbănuţă and Roşu 2012], but none of them were satisfactory. Recently,
matching logic has been proposed as an alternative [Chen and Roşu 2019; Roşu 2017]. The main
idea is that arbitrarily complex programming languages and calculi defined in K become theories
in matching logic, and all the tools offered by K, such as execution engines, symbolic reasoning,
and even full functional correctness verification of program or language properties, become proof
search heuristics in matching logic, which admits a small proof system and thus a small trust base.
Several important logical systems have been defined in matching logic, but none where binders play
a major role, like 𝜆-calculus or type systems. On the other hand, the current K implementations
already provide built-in support for user-defined binders of certain restricted forms (Remark 43).
Thus, this paper fills this gap by giving the theoretical results about how to define logical systems
that feature binders in matching logic and thus in K, without any foundational compromise.

All proof details can be found in the companion technical report [Chen and Roşu 2020].

2 RELATED WORK: EXISTING APPROACHES TO DEFINING BINDERS

We discuss some existing approaches to defining binders and compare them with our approach
using matching logic. These approaches include: (1) de Bruijn techniques [de Bruijn 1972], which
give 𝛼-equivalent terms identical encodings; (2) combinators [Church 1941], which translate terms
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with binders to binder-free combinator terms; (3) nominal logic [Pitts 2003], which uses first-order
logic (FOL) to axiomatize name-swapping and freshness, and uses them to axiomatize object-level
binding; (4) higher-order abstract syntax [Pfenning and Elliott 1988] (abbreviated HOAS), which uses
fixed binders in the meta-language, often a variant of typed 𝜆-calculus, to define arbitrary binders
in the object-level systems; (5) explicit substitution [Abadi et al. 1991], which uses customized calculi
where the meta-level operation of capture-free substitution is incarnated in an object-level operation
as part of the calculi; (6) term-generic logic [Popescu and Roşu 2015] (abbreviated TGL), which is a
FOL variant parametric in a generic term set, defined axiomatically and not constructively, which
can be instantiated by a concrete binder syntax. We discuss how these approaches handle binders
and binding behavior using the following 𝜆-expression as an example (a closed expression with
distinct bound variables, which requires 𝛼-renaming during reduction to avoid variable-capture):

(𝜆𝑧. (𝑧𝑧)) (𝜆𝑥. 𝜆𝑦. (𝑥𝑦)) (2)

De Bruijn encodings eliminate bound variables by replacing them with indexes that denote the
number of (nested) binders that are in scope between them and their corresponding binders.1 For
example, the de Bruijn encoding of (2) is (𝜆(11)) (𝜆𝜆(21)), where 1 means that it is bound by the
closest binder and 2 means that it is bound by the second closest binder. Bound variables are elimi-
nated so 𝛼-equivalent expressions have the same de Bruijn encoding. However, substitution requires
index shifting, to adjust the indexes. De Bruijn techniques are used as the internal representations
of terms in several theorem provers, but the encoding is not human readable, implementations are
often tricky to get right, and efficiency problems can still appear on large terms.
Combinators translate binders to binder-free terms, which are built with constants like 𝑘 and 𝑠 ,

and application. This translation is called abstraction elimination, and can be implemented using
term rewriting [Klop 1993]. It may cause exponential growth in the translated term size. Reduction
of combinatory terms is done using equations like 𝑘𝑥𝑦 = 𝑥 and 𝑠𝑥𝑦𝑧 = (𝑥𝑧) (𝑦𝑧) regarded as rewrite
rules. Combinatory terms are not human readable; for example, (one of) the equivalent combinator
term of (2) is 𝑠 (𝑠𝑘𝑘) (𝑠𝑘𝑘)𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘) (𝑠𝑘𝑘))) (𝑘 (𝑠𝑘𝑘)). Using combinators, the binding behavior
of 𝜆 is captured implicitly through abstraction elimination.
Nominal logic refers to a family of FOL theories whose signatures contain a name-swapping

operation (𝑥 𝑦)·𝑒 that swaps all (free and bound) occurrences of 𝑥 and𝑦 in 𝑒 , and a freshness predicate
𝑥 # 𝑒 stating that 𝑥 has no free occurrences in 𝑒 . The notions of 𝛼-equivalence and capture-free
substitution are then axiomatized using additional FOL axioms on top of the axioms of name-
swapping and freshness. As an example, the following is an axiom in [Pitts 2003, Appendix A.3]
that states that swapping two fresh names that do not occur free in a term has not effect:

(F1) ∀𝑥 :Var .∀𝑦:Var .∀𝑒:Exp. 𝑥 # 𝑒 ∧ 𝑦 # 𝑒 → (𝑥 𝑦) · 𝑒 = 𝑒

where Var and Exp are the sorts of variables (also called atoms) and expressions, respectively.
Nominal logic also defines a new sort [Var]Exp and a FOL binary function _._ : Var × Exp →
[Var]Exp for binding, whose properties such as 𝛼-equivalence are axiomatized. Then, 𝛽-reduction
in 𝜆-calculus, e.g., can be defined in the following way [Pitts 2013, pp. 251, Eq. (12.17)]:

(𝛽 in Nominal Logic) ∀𝑥 :Var .∀𝑒:Exp.∀𝑒 ′:Exp. app(lam(𝑥 .𝑒), 𝑒 ′) = subst ((𝑥 .𝑒), 𝑒 ′)

where subst (_, _) is a binary function defined by four axioms (see [Pitts 2003, pp. 8]), in accordance
to the four possible forms that 𝑒 can take (i.e., the variable 𝑥 ; a variable distinct from 𝑥 ; application;
or abstraction). E.g., the following is the substitution axiom for abstraction [Pitts 2013, Eq. (12.20)]:

∀𝑥 :Var .∀𝑦:Var .∀𝑒:Exp.∀𝑒 ′:Exp. 𝑦 # 𝑒 ′ → subst (𝑥 . lam(𝑦. 𝑒), 𝑒 ′) = lam(𝑦. subst (𝑥 . 𝑒, 𝑒 ′))

1Other de Bruijn encodings count the binders from the top of the terms.
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Besides nominal logic and its metatheory [Cheney 2006, 2014; Gabbay and Cheney 2004], there
is a wider range of research on nominal techniques in general, including studies on using Fraenkel-
Mostowski sets [Gabbay and Pitts 1999], nominal sets [Pitts 2005] or similar set-theoretic struc-
tures [Urban 2008] as well as category-theoretic notions [Gabbay and Gabbay 2017] to formalize and
reason about binders and operations on them, and have resulted in practical implementations that
support complex recursive and inductive reasoning over terms with bindings as well as algorithms
for unification [Ayala-Rincón et al. 2018] and narrowing [Ayala-Rincón et al. 2016]. These nominal
approaches deal with variable names and bindings directly, treat variable names as normal data
that can be manipulated, quantified, and reasoned about, and give explicit definitions to operations
such as free variables and capture-free substitution (via name-swapping and freshness).

Nominal approaches can be directly exploited in matching logic, because FOL is a methodological
fragment of matching logic. Indeed, [Roşu 2017, Section 7] shows how matching logic symbols
(see Definition 2) can be used to uniformly represent both FOL predicates and FOL functions
(Sections 3.2.1 and 3.2.2), in a way where FOL theories become matching logic theories as are,
without any translations. Therefore, nominal logic variants can be defined as theories in matching
logic straightforwardly, via the FOL capability of matching logic. Future research shall reveal more
direct methods that capture the essence of nominal techniques (e.g., nominal sets) within matching
logic, without going through FOL. In this paper, however, we explore a different, more HOAS-style
treatment of binders using matching logic, where the built-in ∃ binder is used to define binders in
object-languages (explained below and revisited in Remark 1).
Higher-order abstract syntax (HOAS) is a design pattern where some expressive higher-order

calculus, usually one of the variants of typed 𝜆-calculus [Felty and Momigliano 2012; Gacek et al.
2012; Harper et al. 1993; McDowell and Miller 2002; Paulson 1989; Pfenning and Elliott 1988] or
second-order equational logic [Felty and Momigliano 2012; Fiore and Mahmoud 2010], is used
as a foundation to define object-level binders. As an example, we show (part of) the HOAS-style
definition of (untyped) 𝜆-calculus in the Twelf system [Pfenning and Schürmann 1999]:

exp : type. // the type for 𝜆-expressions
app : exp -> exp -> exp. // application is defined as a constant of a function type
lam : (exp -> exp) -> exp. // lambda is defined as a constant of a function type whose

// argument also has a function type; e.g., the encoding of (2)
// is app (lam ([z] (app z z))) (lam ([x] lam ([y] (app x y))))

red : exp -> exp -> type. // reduction relation (its type result makes it a binary predicate)
red-beta : red (app (lam ([x] (F x))) E) (F E). // 𝛽-reduction, discussed below

where [x] _ is the built-in binder of (the HOAS variant underlying) Twelf; E is a variable of type
exp; F is a variable of the function type exp -> exp; and (F x) is the (metalevel) application of F
to x. Higher-order matching is needed when red-beta is applied, and the internal substitution
mechanism of Twelf is triggered when F is applied to E. The binding behavior of 𝜆 is obtained from
the binding behavior of the built-in binder [x] _, via a constant lam; specifically, 𝜆𝑥 .𝑒 is encoded as
lam ([x] e). Object-level substitution is avoided, but clearly this is not how 𝛽-reduction is usually
defined (for the usual definition, see (𝛽 , Reduction) below). Application in 𝜆-calculus is defined
by a simple desugaring to the builtin application, using a different constant app; that is, 𝑒1 𝑒2 is
defined as app 𝑒1 𝑒2 (rather than 𝑒1 𝑒2). Thus, the definition needs to be justified by proving adequacy
theorems that establish a bijection between the expressions and formal proofs of 𝜆-calculus, and
the HOAS terms and type derivations, which is a tedious and nontrivial task [Cheney et al. 2012].
Explicit substitution turns the implicit meta-level substitution operation into more explicit and

atomic steps, in order to provide a better understanding of the operational semantics and execution
models of higher-order calculi (see [Kesner 2009, pp. 1ś2]; see also [Bloo 1997, pp. 4] for historical

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.



A General Approach to Define Binders using Matching Logic 88:5

remarks). By doing so, it bridges the gap between higher-order formalisms and their implementa-
tions, and has resulted in several practical tools. For example, [Stehr 2000] proposes a calculus for
explicit substitution whose implementation allows us to define executable formal representations
of many logical systems featuring binders with a close-to-zero representational distance.
Term-generic logic (TGL) is a FOL variant, where the set of terms 𝑇 is generic and given as a

parameter that exports two operationsÐfree variables and capture-free substitutionÐsatisfying
certain properties [Popescu and Roşu 2015, Definition 2.1]. TGL formulas are then defined con-
structively as in FOL, from predicates 𝜋 (𝑒1, . . . , 𝑒𝑛) and equations 𝑒1 = 𝑒2, to compound formulas
built using ∧, ¬, and ∃, with the important exception that 𝑒1, . . . , 𝑒𝑛 are not constructive terms like
in FOL, but generic terms in 𝑇 . In the case of 𝜆-calculus, the set of 𝜆-expressions Λ can be proved
to satisfy the definition of a generic term set in TGL, so we can instantiate TGL by Λ. The binding
behavior of 𝜆 is inherited automatically, through the𝑇 instance. The metalevel of 𝜆-calculus can be
defined by TGL axioms. For example, 𝛽-reduction is captured either as an equation or as a relation:

(𝛽 , Eqation) (𝜆𝑥 . 𝑒) 𝑒 ′ = 𝑒 ′[𝑒/𝑥] (𝛽 , Reduction) reduces
(

(𝜆𝑥 . 𝑒) 𝑒 ′, 𝑒 ′[𝑒/𝑥]
)

where reduces is a binary predicate; (𝜆𝑥 . 𝑒) 𝑒 ′, 𝑒 ′[𝑒/𝑥] ∈ Λ are generic terms (schemas) that represent
all the concrete instances. TGL has been used to define various systems featuring bindings. In this
paper, we use TGL as an intermediate to capture other systems with binders within matching logic.

Our Approach Using Matching Logic. Our matching logic encoding of binders is inspired by the
key observation that the meaning of a term with binders, say 𝜆𝑥 . 𝑒 , can be given on top of the
function that maps 𝑥 to 𝑒 , which can be encoded as its graph: the set of argument-value pairs
⋃

𝑥 {(𝑥, 𝑒)}. This set is then packed as an object and passed to a retraction function lambda that
retracts/decodes the intended meaning of the term. We recall the encoding of 𝜆𝑥 . 𝑒 in Eq. (1) below:

𝜆𝑥 . 𝑒 ≡ lambda (intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩)

Note that by introducing the following notation

[𝑥 :Var] 𝑒 ≡ intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩

the encoding of 𝜆𝑥 .𝑒 becomes lambda ( [𝑥 :Var] 𝑒), where Var is the sort for 𝜆-calculus variables
and thus a subsort of Exp for expressions (see Section 6). Note that our matching logic encoding of
binders is reminiscent of both the nominal encoding lam(𝑥 .𝑒) and the HOAS encoding lam ([x] E).

An important aspect of our approach is that it yields models. We will give a comprehensive study
on the model theory of matching logic, by which every theory is associated with default models
that can be used to give semantic interpretations of all matching logic formulas (called patterns)
of that theory. In particular, the matching logic theory of 𝜆-calculus will also yield a precise and
insightful description of how 𝜆𝑥. 𝑒 is interpreted (semantically) in matching logic models.

Models are insightful. They help us understand a logical system better, from a different angle. It is
not unusual that more than one notion or class of models are proposed for one logic, because each
has its unique merit in helping us understand the logic from a certain perspective. Since matching
logic has a built-in notion of models, by defining a logical system as a matching logic theory we
can immediately study its resulting model theory and properties. For example, in Section 8.2.2, we
show how by defining 𝜆-calculus in matching logic, we obtain a new semantics of 𝜆-calculus that
is representationally complete for all 𝜆-theories.
The importance of models has also been recognized by several HOAS approaches. For exam-

ple, [Fiore et al. 1999] proposes presheaf models of variable binding in a second-order syntax of
binding terms, where the initial model is used to define recursive/inductive operations; this work
also yields an explicit connection to the scope-safe variant of De Bruijn approaches. [Fiore and
Hur 2010; Fiore and Mahmoud 2010] propose for the same binding syntax yet another category
of models, called second-order universal algebras, together with completeness and conservative
extension results w.r.t. first-order universal algebras; however, the conservative extension w.r.t.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.



88:6 Xiaohong Chen and Grigore Roşu

the original logical systems that feature binding and their formal reasoning is not investigated at
our knowledge, and not known if it holds. In our work using matching logic, we shall prove the
conservative extension for all logical systems that feature binders considered in the paper, but will
not cover the topics of inductive reasoning and/or initial models (although a special initial algebra
will be discussed in Section 8 for 𝜆-calculus); this topic is left as future work (see Section 10).

As a logic that features binding, we expect matching logic to be definable within HOAS. Such
a definition will likely work fine in capturing the syntax and binding behavior of matching logic
formulas/patterns as well as its proof theory, but it will not capture the semantics or models
of matching logic; see related discussion in Remark 52. In this paper, we will discuss the other
direction, that is to capture HOAS by matching logic. We will do that indirectly, by firstly capturing
term-generic logic (TGL) and then re-using the existing TGL definitions of HOAS (see [Popescu
and Roşu 2013]). This indirect approach has the advantage that we will be able to examine how the
very general TGL models are translated and preserved when defined in matching logic.

Remark 1. Dealing with binders has been and still is an active research topic. The variety of
proposals and approaches has occasionally caused heated arguments. We conclude this section by
reminding the reader that matching logic was designed to serve as a unified logical foundation for
the K framework, which is intended to support all languages and all definitional styles as logical
theories. That is, when looked at through the matching logic lenses, the various approaches to
binders above become different methodologies for how to define matching logic theories.

3 FUNCTIONAL VARIANT OF MATCHING LOGIC

Matching logic has been recently proposed in its full generality in [Chen and Roşu 2019; Roşu
2017]. In this paper, we will use a variant of matching logic that has a more similar representation
to functional programming languages, where the main constructs are function application and
constants. Since matching logic is relatively new, we will not assume the reader familiar with it.
Therefore, this section has a dual goal: to introduce the reader to the basic intuitions and notations
of matching logic, and to propose and present in detail a functional variant of it. Section 3.1 defines
its syntax and Section 3.2 its models and semantics. We define matching logic theories in Section 3.3.

3.1 Matching Logic Syntax

Matching logic is parametric in a signature that includes variables and constant symbols:

Definition 2. A signature is a tuple Σ = (EV , SV , Σ), where EV ∩ SV = ∅ and

(1) EV is a countably infinite set of element variables denoted 𝑥,𝑦, . . . ;
(2) SV is a countably infinite set of set variables denoted 𝑋,𝑌, . . . ;
(3) Σ is an at most countable set of (constant) symbols, or just symbols, denoted 𝜎, 𝜎1, 𝜎2, . . . .

Matching logic formulas, called Σ-patterns or simply patterns, are inductively defined as follows:

𝜑 F 𝑥 | 𝑋 | 𝜎 | 𝜑1 𝜑2 | ⊥ | 𝜑1 → 𝜑2 | ∃𝑥 . 𝜑 (2)

where 𝜑1 𝜑2 is called an application and is assumed associative to the left; ∃𝑥 . 𝜑 is the built-in
binder in matching logic that binds 𝑥 within 𝜑 . Note that ∃ only binds element variables and not
set variables. We use Pattern(Σ), or simply Pattern, to denote the set of all Σ-patterns.

Remark 3. The syntax of the original matching logic has sorts and multiary many-sorted oper-
ations [Chen and Roşu 2019; Roşu 2017]. Our functional variant syntax in Definition 2 is much
simpler: it has no sorts and contains only one binary operation, the application, and constants. Yet,
as seen in this paper, this simpler variant has the same expressiveness and reasoning capability.

As a convention, we assume the scope of ∃ goes as far as possible to the right, so for example,
∃𝑥 .𝑦 → 𝑥 should be understood as ∃𝑥 . (𝑦 → 𝑥). In addition, we assume the standard notions of free
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free variables:
FV(𝑥) = {𝑥} FV(𝑋 ) = {𝑋 } FV(𝜎) = ∅ FV(𝜑1 𝜑2) = FV(𝜑1) ∪ FV(𝜑2)
FV(⊥) = ∅ FV(𝜑1 → 𝜑2) = FV(𝜑1) ∪ FV(𝜑2) FV(∃𝑥 . 𝜑) = FV(𝜑) \ {𝑥}

𝛼-renaming:
∃𝑥 . 𝜑 ≡ ∃𝑦. 𝜑 [𝑦/𝑥], for 𝑦 ∉ FV(𝜑)

capture-free substitution (where 𝑦 distinct from 𝑥 and 𝑧 is fresh):
(∃𝑥 . 𝜑) [𝜓/𝑥] ≡ ∃𝑥 . 𝜑 (∃𝑥 . 𝜑) [𝜓/𝑦] ≡ ∃𝑧. 𝜑 [𝑧/𝑥] [𝜓/𝑦]

derived constructs defined as syntactic sugar:
¬𝜑 ≡ 𝜑 → ⊥ 𝜑1 ∨ 𝜑2 ≡ ¬𝜑1 → 𝜑2 𝜑1 ∧ 𝜑2 ≡ ¬(¬𝜑1 ∨ ¬𝜑2)
⊤ ≡ ¬⊥ ∀𝑥 . 𝜑 ≡ ¬∃𝑥 .¬𝜑 𝜑1 ↔ 𝜑2 ≡ (𝜑1 → 𝜑2) ∧ (𝜑2 → 𝜑1)

Fig. 1. Above line: standard notions of free variables, 𝛼-equivalence, and capture-free substitution for ∃ in

matching logic. Below line: usual derived constructs defined as syntactic sugar. Standard precedence assumed.

variables FV(𝜑) ⊆ EV ∪ SV , 𝛼-equivalence 𝜑1 ≡𝛼 𝜑2, and capture-free substitution 𝜑 [𝜓/𝑥], which
are all summarized in Fig. 1. We regard 𝛼-equivalent patterns as syntactically identical patterns; in
other words, 𝜑1 ≡𝛼 𝜑2 implies that 𝜑1 ≡ 𝜑2. A set of common derived constructs are also included
in Fig. 1 in the usual way as syntactic sugar, and we assume the standard precedence among them.
The matching logic syntax of patterns given in Eq. (2) is similar to the FOL syntax of terms

and formulas, except that we drop the distinction between terms and formulas, and unify them as
patterns.2 Also, we drop the multiary functions/predicates in FOL, and replace them with a set of
constant symbols that can be applied to other patterns using the built-in application 𝜑1 𝜑2. This
simpler syntax of matching logic makes it easier to develop its metatheory, and yet, as we will show
in Section 4, we do not lose any specification or reasoning power, and can still define important
and necessary mathematical instruments as theories and notations in matching logic.

By unifying the syntax of terms and formulas, we can bind variables in terms, using the built-in
matching logic binder ∃. A minimal example is ∃𝑥 . 𝑥 , where 𝑥 is bound by ∃𝑥 , so FV(∃𝑥 . 𝑥) = ∅.
While ∃𝑥 . 𝑥 is a well-formed matching logic pattern, it is neither a well-formed term nor a well-
formed formula in FOL. As we will see in Section 6, being able to build terms and create bindings
over them is what makes our encoding of various binders in matching logic possible, and novel.

3.2 Matching Logic Semantics

Matching logic patterns are interpreted on an underlying carrier set of elements, and each pattern
is then interpreted as a set of elements, which are those that match the pattern. This is called the
pattern matching semantics of matching logic, and is what inspired the name łmatching logicž.

Intuitively, the pattern ⊥ (called bottom) is matched by no elements, while ⊤ (called top, defined
in Fig. 1) is matched by all elements. Conjunction 𝜑1 ∧ 𝜑2 is matched by the elements that match
both𝜑1 and𝜑2, disjunction𝜑1∨𝜑2 by the elements that match𝜑1 or𝜑2, negation ¬𝜑 by the elements
that do not match 𝜑 , and implication 𝜑1 →𝜑2 by all elements 𝑎 such that if 𝑎 matches 𝜑1 then 𝑎

matches 𝜑2. Element variable 𝑥 is matched by the element to which 𝑥 evaluates (see Definition 7).
Set variable 𝑋 is matched by the set of elements to which 𝑋 evaluates; this set can be empty, or
total, or any subset of the carrier set. Quantification ∃𝑥 . 𝜑 is matched by the elements that match 𝜑
for some valuation of 𝑥 ; that is, it abstracts away the irrelevant part 𝑥 from the matched part 𝜑 .

Definition 4. GivenΣ = (EV , SV , Σ), aΣ-model (or justmodel) is a tuple (𝑀, _•_, {𝜎𝑀 }𝜎 ∈Σ), where

2The syntax of a logic should be in harmony with its semantics. FOL distinguishes terms and formulas because their

interpretations are different: terms are interpreted as elements and formulas are interpreted as truth values. As we will

see in Section 3.2, the matching logic semantics interprets patterns uniformly to the sets of elements that match them, so

there is no need to distinguish terms and formulas. Other such examples include modal logic [Blackburn et al. 2001] (which

abandons terms entirely) and separation logic [Reynolds 2002] (which merges the syntax for memory heaps with formulas).
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(Curry.1) 𝑘 = 𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘)𝑘)) (𝑘 (𝑠𝑘𝑘))

(Curry.2) 𝑠 = 𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘 (𝑠 (𝑘𝑠))) (𝑠 (𝑘 (𝑠 (𝑘𝑘)))𝑠))) (𝑘 (𝑘 (𝑠𝑘𝑘)))

(Curry.3) 𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘) (𝑠 (𝑘𝑠)𝑘))) (𝑘𝑘) = 𝑠 (𝑘𝑘)

(Curry.4) 𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘)) = 𝑠 (𝑘𝑘) (𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘) (𝑠𝑘𝑘))) (𝑘 (𝑠𝑘𝑘)))

(Curry.5) 𝑠 (𝑘 (𝑠 (𝑘𝑠))) (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑠))) = 𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘) (𝑠 (𝑘𝑠) (𝑠 (𝑘 (𝑠 (𝑘𝑠)))𝑠)))) (𝑘𝑠)

(Meyer-Scott) ∀𝑥 .∀𝑦. (∀𝑧. 𝑥𝑧 = 𝑦𝑧) → 𝑠 (𝑘 (𝑠𝑘𝑘))𝑥 = 𝑠 (𝑘 (𝑠𝑘𝑘))𝑦

Fig. 2. Five axioms of Curry and the Meyer-Scott axiom for 𝜆-models [Barendregt 1984, pp. 94] (•𝐴 is omitted).

(1) 𝑀 is an underlying carrier set, required to be non-empty (𝑀 ≠ ∅);
(2) _•_ : 𝑀 ×𝑀 → P(𝑀) is called the interpretation of application, where P(𝑀) is the powerset;
(3) 𝜎𝑀 ⊆ 𝑀 is a subset, called the interpretation of 𝜎 , defined for every 𝜎 ∈ Σ.

We often use the same letter𝑀 to denote the above model and refer to Σ as the signature of𝑀 .

Let us compare matching logic and FOL, w.r.t. models. Both logics require their models to have
nonempty carriers, so they agree on (1). For (3), however, FOL models interpret constants to
elements, while matching logic models interpret constants to any carrier subsets. Similarly, for (2),
FOL models interpret application (regarded as a binary function) as a function of𝑀 ×𝑀 → 𝑀 that
returns one element, while matching logic models interpret application to a function that returns
a set. We use the terminology functional interpretation to refer to how FOL interprets functions
and terms. Functional interpretation is in harmony with the syntax of FOL terms, which represent
elements. Similarly, the set-theoretic interpretation of matching logic application and symbols is in
harmony with its syntax of patterns, which represent sets of elements.
Note that the FOL functional interpretation can be seen as a special instance of the matching

logic set-theoretic interpretation, due to the bijection between an element 𝑎 and the singleton {𝑎}:
for any set 𝑀 , the set of all singletons of 𝑀 is isomorphic to 𝑀 itself. This justifies our abuse of
notation (used often in this paper) in which {𝑎} is written as 𝑎 when there is no confusion. We
will use two examples to illustrate how the functional interpretation is a special instance of the
set-theoretic interpretation. These examples are also related to the model theory of 𝜆-calculus, so
we will re-visit them later; for now, we only use them as examples of matching logic models.

Example 5. Let (𝐴, _•𝐴_) be an applicative structure [Barendregt 1984, Definition 5.1.1], where𝐴 is
a nonempty carrier set and _•𝐴_ : 𝐴×𝐴 → 𝐴 is an application function. Let matching logic signature
Σ
∅ contain no symbols. We define a Σ

∅-model (𝑀, _•_, {}), where𝑀 = 𝐴 and 𝑎 •𝑏 = {𝑎 •𝐴 𝑏} for all
𝑎, 𝑏 ∈ 𝐴. Then,𝑀 is isomorphic to 𝐴 under the bijection between elements and singletons.

Example 6. Let (𝐴, _•𝐴_, 𝑘, 𝑠) be a combinatory algebra [Barendregt 1984, Definition 5.1.7], where
(𝐴, _•𝐴_) is an applicative structure and 𝑘, 𝑠 ∈ 𝐴 are distinguished elements such that 𝑘 •𝐴 𝑎 •𝐴 𝑏 = 𝑎

and 𝑠 •𝐴 𝑎 •𝐴 𝑏 •𝐴 𝑐 = (𝑎 •𝐴 𝑐) •𝐴 (𝑏 •𝐴 𝑐), for all 𝑎, 𝑏, 𝑐 ∈ 𝐴.𝐴 is called a 𝜆-model [Barendregt 1984], if it
additionally satisfies the five axioms of Curry [Barendregt 1984, Theorem 5.2.5] and the Meyer-Scott
axiom [Barendregt 1984, Definition 5.2.7], shown in Fig. 2. Let Σ

ks be the matching logic signature
Σ
ks

= {k, s} and define a Σ
ks-model (𝑀, _•_, {k𝑀 , s𝑀 }), where 𝑀 = 𝐴, k𝑀 = {𝑘}, s𝑀 = {𝑠}, and

𝑎 • 𝑏 = {𝑎 •𝐴 𝑏} for all 𝑎, 𝑏 ∈ 𝐴. Then𝑀 is isomorphic to 𝐴 under the element-singleton bijection.

Examples 5 and 6 show that the functional interpretation (of application and constants) is a
special instance of the set-theoretic interpretation of matching logic, and that applicative structures,
combinatory algebras, and 𝜆-models are special instances of matching logic models. In Section 4,
we will show how to enforce functional interpretation in matching logic models, axiomatically.

We continue with the semantics of matching logic and define the interpretation of patterns.
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Definition 7. Let𝑀 be a matching logic model like in Definition 4. We extend the interpretation
of application _•_ pointwisely, from over elements to over sets, as 𝐴 • 𝐵 =

⋃

𝑎∈𝐴,𝑏∈𝐵 𝑎 • 𝑏 for any
𝐴, 𝐵 ⊆ 𝑀 . An𝑀-valuation (or simply valuation), written 𝜌 : (EV ∪ SV ) → 𝑀 ∪P(𝑀), is a function
that maps element variables to elements and set variables to sets, i.e., 𝜌 (𝑥) ∈ 𝑀 for 𝑥 ∈ EV and
𝜌 (𝑋 ) ⊆ 𝑀 for 𝑋 ∈ SV . It yields a pattern valuation, written |_|𝜌 : Pattern → P(𝑀), defined as:

(1) |𝑥 |𝜌 = {𝜌 (𝑥)} for 𝑥 ∈ EV ;
(2) |𝑋 |𝜌 = 𝜌 (𝑋 ) for 𝑋 ∈ SV ;
(3) |𝜎 |𝜌 = 𝜎𝑀 for 𝜎 ∈ Σ;
(4) |𝜑1 𝜑2 |𝜌 = |𝜑1 |𝜌 • |𝜑2 |𝜌 , where _•_ is pointwisely extended to sets;

(5) |⊥|𝜌 = ∅;
(6) |𝜑1 → 𝜑2 |𝜌 = 𝑀 \ (|𝜑1 |𝜌 \ |𝜑2 |𝜌 ), where ł\ž denotes set difference;
(7) |∃𝑥 . 𝜑 |𝜌 =

⋃

𝑎∈𝑀 |𝜑 |𝜌 [𝑎/𝑥 ] , where 𝜌 [𝑎/𝑥] is the valuation 𝜌
′ such that 𝜌 ′(𝑥) = 𝑎, 𝜌 ′(𝑦) = 𝜌 (𝑦)

for all 𝑦 ∈ EV distinct from 𝑥 , and 𝜌 ′(𝑋 ) = 𝜌 (𝑋 ) for all 𝑋 ∈ SV .

Remark 8. The above semantic rules should not be unexpected. Rules (1) and (2) interpret variables
according to 𝜌 . Rules (3) and (4) interpret symbols and application according to𝑀 . For rules (5)-(7),
if we regard ∅ as łfalsež and𝑀 as łtruež, then these rules become precisely the FOL semantic rules
of bottom, implication, and ∃-quantification, respectively.

We can prove that the derived constructs in Fig. 1 have the expected semantics:

Proposition 9. The following propositions hold:

(1) |¬𝜑 |𝜌 = 𝑀 \ |𝜑 |𝜌 ;
(2) |𝜑1 ∨ 𝜑2 |𝜌 = |𝜑1 |𝜌 ∪ |𝜑2 |𝜌 ;
(3) |𝜑1 ∧ 𝜑2 |𝜌 = |𝜑1 |𝜌 ∩ |𝜑2 |𝜌 ;
(4) |⊤|𝜌 = 𝑀 ;

(5) |𝜑1 ↔ 𝜑2 |𝜌 = 𝑀 \ (|𝜑1 |𝜌 △ |𝜑2 |𝜌 ), where ł△ž denotes set symmetric difference;

(6) |∀𝑥 . 𝜑 |𝜌 =
⋂

𝑎∈𝑀 |𝜑 |𝜌 [𝑎/𝑥 ] .

Proof. We only prove (1) and (6), as the others are similar. For (1), we have |¬𝜑 |𝜌 = |𝜑 → ⊥|𝜌 =

𝑀 \(|𝜑 |𝜌 \ |⊥|𝜌 ) = 𝑀 \(|𝜑 |𝜌 \∅) = 𝑀 \ |𝜑 |𝜌 . For (6), we have |∀𝑥 . 𝜑 |𝜌 = |¬∃𝑥 .¬𝜑 |𝜌 = 𝑀 \ |∃𝑥 .¬𝜑 |𝜌 =

𝑀 \
⋃

𝑎∈𝑀 |¬𝜑 |𝜌 [𝑎/𝑥 ] = 𝑀 \
⋃

𝑎∈𝑀 (𝑀 \ |𝜑 |𝜌 [𝑎/𝑥 ]) = 𝑀 \ (𝑀 \
⋂

𝑎∈𝑀 |𝜑 |𝜌 [𝑎/𝑥 ]) =
⋂

𝑎∈𝑀 |𝜑 |𝜌 [𝑎/𝑥 ] . □

Remark 10. Definition 7 and Proposition 9 show that there is a close connection between the
matching logic pattern constructs and the set operations in set theory: conjunction corresponds
to intersection of two sets; disjunction corresponds to union of two sets; negation corresponds
to set complement; top (⊤) corresponds to the total set; bottom (⊥) corresponds to the empty
set; ∃-quantification corresponds to the (big) union of a collection of sets; and ∀-quantification
corresponds to the (big) intersection of a collection of sets. This connection to the set-theoretic
operations can be useful to understand the intuitive meaning of complex matching logic patterns.

3.2.1 Predicate Patterns. A difference between FOL formulas and matching logic patterns is that
the former can only be interpreted as either true or false, while the latter can be interpreted as any
subsets of the carrier set. Following up on Remark 8, we identify two special sets,𝑀 and ∅, and use
them to represent (logical) true and false, respectively. Obviously, not all patterns are interpreted as
𝑀 or ∅. Given a model𝑀 , we call 𝜑 an𝑀-predicate, if |𝜑 |𝜌 ∈ {∅, 𝑀} for all 𝜌 . We call 𝜑 a predicate

(or predicate pattern), if it is an𝑀-predicate in all𝑀 . Predicate patterns can be built from ⊥, ⊤, and
matching logic logical constructs, e.g., ∀𝑥 . (𝜎 𝑥) ∧ ¬(𝜎 𝑥). More interesting patterns can be built
from symbols and application. For example, 𝜎 𝑥1 · · · 𝑥𝑛 is a predicate pattern if the underlying
matching logic theory (discussed in Section 3.3) enforces the models to interpret 𝜎 as a predicate
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(i.e., either ∅ or 𝑀). We will see more predicate patterns in Section 4 and throughout the paper.
Roughly speaking, predicate patterns are the matching logic counterparts of FOL formulas. They
make łstatementsž, and can take only two possible values:𝑀 if the statements are facts, and ∅ if the
statements are not facts. Note that except the application, all matching logic constructs (primitive
or derived) preserve the predicate-ness of patterns. We can then use application to build FOL-style
predicates, and this way regard predicate logic as a methodological fragment of matching logic.

3.2.2 Functional Patterns. Examples 5 and 6 emphasized that any set 𝑀 is isomorphic to the
set of singletons of 𝑀 , and that functional interpretation is a special instance of set-theoretic
interpretation. Formally, given𝑀 , we call 𝜑 an𝑀-functional pattern if |𝜑 |𝜌 is a singleton for all 𝜌 .
We call 𝜑 a functional pattern, if it is an𝑀-functional pattern for all𝑀 . Roughly speaking, functional
patterns are the matching logic counterparts of FOL terms. A functional pattern denotes exactly
one element; e.g., 𝑥 is the simplest functional pattern. More interesting functional patterns can be
built by symbols and application; e.g., 𝜎 𝑥1 · · · 𝑥𝑛 is a function pattern if the underlying matching
logic theory (discussed in Section 3.3) enforces the models to interpret 𝜎 as a function. We will
show many examples of functional patterns in Section 4 and throughout the paper.

3.3 Matching Logic Theories

Examples 5 and 6 show that we sometimes want to consider only a subclass of matching logic
models, those that satisfy certain properties. This can be achieved by defining a matching logic
theoryÐa set of patterns regarded as axiomsÐand considering only the satisfying models. Formally:

Definition 11. For𝑀 and 𝜑 , we say𝑀 validates 𝜑 , or 𝜑 holds in𝑀 , written𝑀 ⊨ 𝜑 , iff |𝜑 |𝜌 = 𝑀

for all 𝜌 . For a pattern set Γ, we say𝑀 validates Γ, written𝑀 ⊨ Γ, iff𝑀 ⊨ 𝜓 for all𝜓 ∈ Γ. We write
Γ ⊨ 𝜑 , iff 𝑀 ⊨ Γ implies 𝑀 ⊨ 𝜑 for all 𝑀 . A matching logic theory (Σ, Γ) is a pair, where Σ is a
signature and Γ is a set of Σ-patterns. We often abbreviate (Σ, Γ) as Γ, if Σ is understood.

Note that 𝜑 holds in𝑀 if it represents a łlogical truthž, i.e., its interpretation is the total set𝑀 .

Remark 12. The axiom set Γ may contain patterns that have free variables. By Definition 11, free
(element and set) variables are effectively universally quantified, as we need to check the validity of
each axiom on all possible valuations. Free element variables in an axiom can be eliminated using
∀-quantification, defined in Fig. 1, as in FOL. However, free set variables in an axiom cannot be
eliminated, because ∀-quantification is not applicable to set variables. Allowing free set variables in
axioms to be effectively universally quantified, makes matching logic more expressive (in terms of
capturing models) than FOL (see Section 4.4), and comparable to the fragment of monadic second-
order logic [Courcelle and Engelfriet 2012; Virtema et al. 2013] where all quantifiers over sets are
universal quantifiers and only appear at the top.

We will define various matching logic theories in the rest of the paper. To define a theory, we
need to define its sets of element variables, set variables, symbols, and axioms. We often omit
explicit definitions of the variable sets and only specify the symbol and axiom sets. For readability,
we mix the definitions of the symbol and axiom sets in our narrative texts. For example, when we
say łwe consider/define a symbol 𝜎 ∈ Σž, we mean to add 𝜎 to the symbol set of the theory we
are defining. Similarly, when we say that łwe define/assume an axiom 𝜓ž, we mean to add 𝜓 to
the axiom set of the theory we are defining. We will often define a theory Γ

′ by building it upon
another more basic theory Γ. In that case, Γ′ is assumed to include all components of Γ.

4 IMPORTANT MATHEMATICAL INSTRUMENTS

In this section, we (axiomatically) define several important mathematical instruments, like functions
and equality, that are required in order to define binders as theories within matching logic (as
opposed to extensions of the logic). We also propose appropriate notations for them. In Section 4.1,
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we define the definedness symbol and use it to define equality, membership, set-theoretic inclusion,
and functional constants. In Section 4.2, we define the inhabitant symbol and use it to define sorts,
subsorting, and many-sorted functions and partial functions. This allows us to reason about sorts
and to capture logical systems with sorts, in the unsorted matching logic. In Sections 4.3 and 4.4,
we define matching logic theories that completely capture the models of product sets and powersets.

4.1 Definedness Symbol and Related Instruments

Recall the pattern matching semantics of matching logic: the interpretation of pattern 𝜑 is the set
of elements that match it. When 𝜑 is matched by at least one element, we say that 𝜑 is defined. The
definedness symbol (Definition 13) takes any pattern 𝜑 , and builds a new definedness pattern ⌈𝜑⌉,
which is a predicate pattern stating that 𝜑 is defined. Many important mathematical instruments
such as equality and membership, can be derived from the definedness symbol as syntactic sugar.

Definition 13. Let us consider a (constant) symbol written ⌈_⌉ ∈ Σ, which we call the definedness
symbol. We write ⌈𝜑⌉ to mean ⌈_⌉ 𝜑 , obtained by applying ⌈_⌉ to 𝜑 . We define the following axiom:

(Definedness) ⌈𝑥⌉ // or, equivalently, ∀𝑥 . (⌈_⌉ 𝑥)

We define totality ⌊ _ ⌋, equality _=_, membership _∈_, and set inclusion _⊆_ as derived constructs:

⌊𝜑⌋ ≡ ¬⌈¬𝜑⌉ 𝜑1 = 𝜑2 ≡ ⌊𝜑1 ↔ 𝜑2⌋ 𝑥 ∈ 𝜑 ≡ ⌈𝑥 ∧ 𝜑⌉ 𝜑1 ⊆ 𝜑2 ≡ ⌊𝜑1 → 𝜑2⌋

Intuitively, (Definedness) states that every individual element 𝑥 is defined. This is clearly true
with our intended meaning of ⌈_⌉, because 𝑥 is matched by exactly one element to which it evaluates;
this intended meaning is precisely what the (Definedness) axiom captures. Specifically, in any
model that validates (Definedness), ⌈𝑥⌉ is interpreted as the total set, according to matching logic
validity (Definition 11). Now, consider any pattern 𝜑 that is defined, and that 𝜑 is matched by one
element, say 𝑥 . By pointwise extension (Definition 7), the interpretation of ⌈𝜑⌉ must include the
interpretation of ⌈𝑥⌉, which we know is the total set. Therefore, ⌈𝜑⌉ is also interpreted as the total
set, as intended. On the other hand, if 𝜑 is undefined, its interpretation is the empty set, and by
pointwise extension, ⌈𝜑⌉ is also interpreted as the empty set. This intuition is formalized below.

Proposition 14. For any model𝑀 , patterns 𝜑, 𝜑1, 𝜑2, element variable 𝑥 , and valuation 𝜌 , we have

(1) ⌈𝑎⌉𝑀 = 𝑀 for any 𝑎 ∈ 𝑀 , where ⌈𝑎⌉𝑀 means ⌈_⌉𝑀 • 𝑎 and ⌈_⌉𝑀 is the interpretation of ⌈_⌉;
(2) | ⌈𝜑⌉ |𝜌 = 𝑀 if |𝜑 |𝜌 ≠ ∅; otherwise, | ⌈𝜑⌉ |𝜌 = ∅;
(3) | ⌊𝜑⌋ |𝜌 = 𝑀 if |𝜑 |𝜌 = 𝑀 ; otherwise, | ⌊𝜑⌋ |𝜌 = ∅;
(4) |𝜑1 = 𝜑2 |𝜌 = 𝑀 if |𝜑1 |𝜌 = |𝜑2 |𝜌 ; otherwise, |𝜑1 = 𝜑2 |𝜌 = ∅;
(5) |𝑥 ∈ 𝜑 |𝜌 = 𝑀 if 𝜌 (𝑥) ∈ |𝜑 |𝜌 ; otherwise, |𝑥 ∈ 𝜑 |𝜌 = ∅;
(6) |𝜑1 ⊆ 𝜑2 |𝜌 = 𝑀 if |𝜑1 |𝜌 ⊆ |𝜑2 |𝜌 ; otherwise, |𝜑1 ⊆ 𝜑2 |𝜌 = ∅; note that |𝑥 ⊆ 𝜑 |𝜌 = |𝑥 ∈ 𝜑 |𝜌 ;

Note that all the above patterns in (2)-(6) are predicate patterns (Section 3.2.1).

Not all models validate (Definedness). Indeed, as said in Section 3.3, the purpose of axioms and
theories is to restrict models under consideration. A model whose interpretation of application is a
function that always returns the empty set does not validate (Definedness), as it fails to satisfy
Proposition 14(1). Models that satisfy (Definedness) are also easy to come by. A canonical example
is a model𝑀 with one distinguished element #def such that #def •𝑎 = 𝑀 for all 𝑎 ∈ 𝑀 , and let ⌈_⌉𝑀 ,
the interpretation of ⌈_⌉, to be {#def}. Then we have | ⌈𝑥⌉ |𝜌 = ⌈_⌉𝑀 • 𝜌 (𝑥) = {#def} • {𝜌 (𝑥)} =

#def • 𝜌 (𝑥) = 𝑀 , and thus𝑀 validates (Definedness). In fact, any model can be extended into one
that validates (Definedness) by adding an element like #def above to it and letting ⌈_⌉𝑀 be {#def}.
Since definedness is so useful, we assume it in all subsequent theories defined in this paper, and
hereby we do not consider the models that do not satisfy the axiom (Definedness).
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Remark 15. We explain why defining equality needs the definedness symbol, when there is
already the logical biconditional construct 𝜑1 ↔ 𝜑2, given in Fig. 3. It is not always the case that
|𝜑1 = 𝜑2 |𝜌 = |𝜑1 ↔ 𝜑2 |𝜌 for all 𝜌 . By Proposition 14, 𝜑1 = 𝜑2 is a predicate stating that 𝜑1 and

𝜑2 are matched by the same set of elements, while by Proposition 9, 𝜑1 ↔ 𝜑2 is a pattern (not
necessarily a predicate) that is matched by the elements 𝑎, such that 𝑎 matches 𝜑1 iff 𝑎 matches 𝜑2.
If |𝜑1 |𝜌 = |𝜑2 |𝜌 , then both 𝜑1 ↔ 𝜑2 and 𝜑1 = 𝜑2 are interpreted as the total set, but if otherwise,
𝜑1 = 𝜑2 is interpreted as the empty set, while 𝜑1 ↔ 𝜑2 is the complement of set difference. The
fact that we can define equality axiomatically, i.e. without extending the logic, to mean precise
identity in models is particularly useful in our subsequent developments, albeit surprising. Indeed,
it is well-known that equality cannot be defined in FOL (which justifies the extension of FOL with
equality), while in second-order logic it requires quantification over sets.

As a simple example, we can use the definedness symbol (and derived constructs) to axiomatize
functional constants, which are matching logic symbols whose interpretations are singletons.

Example 16. Let 𝜎 ∈ Σ be a matching logic symbol. Let us consider the following axiom

(Functional Constant) ∃𝑥 . 𝜎 = 𝑥

Then for any model𝑀 that validates this axiom, we have |∃𝑥 . 𝜎 = 𝑥 |𝜌 =
⋃

𝑎∈𝑀 |𝜎 = 𝑥 |𝜌 [𝑎/𝑥 ] = 𝑀 .
By Proposition 14, |𝜎 = 𝑥 |𝜌 [𝑎/𝑥 ] is either ∅ or𝑀 , so there exists 𝑎 ∈ 𝑀 such that |𝜎 = 𝑥 |𝜌 [𝑎/𝑥 ] = 𝑀 ,
which implies that 𝜎𝑀 = |𝑥 |𝜌 [𝑎/𝑥 ] = {𝑎}, i.e., 𝜎 is interpreted as a singleton in𝑀 .

4.2 Inhabitant Symbol and Related Instruments

Matching logic is an unsorted logic, but we can capture sorts by defining a set of functional constants
(Example 16) that represent the names of the sorts, and define a special symbol, which we call the
inhabitant symbol, to get the actual inhabitant set of each sort. This intuition is made formal below.
From now on, we will always assume the definedness symbol and the (Definedness) axiom.

Definition 17. A sort constant (or simply sort) is a symbol 𝑠 ∈ Σ, which is a functional constant,
as defined in Example 16. Let us consider another symbol ⟦_⟧ ∈ Σ, which we call the inhabitant
symbol. We write ⟦𝑠⟧ to mean ⟦_⟧ 𝑠 , obtained by applying ⟦_⟧ to 𝑠 , and call it the inhabitant of 𝑠 .

In other words, the pattern 𝑠 is matched by the sort name 𝑠 itself, while ⟦𝑠⟧ is matched by the
actual elements of sort 𝑠 . For example, for two sorts Nat and Int of natural and integer numbers,
Nat is matched by one elementÐthe sort name Nat; Int is matched by one elementÐthe sort name
Int; ⟦Nat⟧ is matched by all natural numbers; and ⟦Int⟧ is matched by all integer numbers. Note
that Definition 17 does not enforce any particular axioms about sorts or the inhabitant symbol.
Their interpretations are determined by the models and can be constrained by axioms. For example,
subsorting 𝑠1 ≤ 𝑠2 is a partial ordering on sorts that enforces the subset relation between the
inhabitants of 𝑠1 and 𝑠2. In matching logic, subsorting can be axiomatically captured:

(Subsorting) ⟦𝑠1⟧ ⊆ ⟦𝑠2⟧

which states that the inhabitant of 𝑠1 is included in the inhabitant of 𝑠2. In this paper we use
subsorting to define the syntax of 𝜆-calculus and other logical systems that feature bindings. In
Section 6 we define a sort Var for 𝜆-calculus variables and a sort Exp for 𝜆-expressions, and we define
the subsorting axiom ⟦Var⟧ ⊆ ⟦Exp⟧ to specify that 𝜆-calculus variables are also 𝜆-expressions.

4.2.1 SortedQuantification. The meaning of ∃𝑥 . 𝜑 is the set-theoretic (big) union of the interpreta-
tions of 𝜑 , with 𝑥 ranging over all elements in the carrier set (see Remark 10). Now that we have
defined sorts, we will want to restrict 𝑥 to range over not all elements, but only those having sort 𝑠 .
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For that, we define the following self-explanatory derived constructs, called sorted quantification:

∃𝑥 :𝑠 . 𝜑 ≡ ∃𝑥 . (𝑥 ∈ ⟦𝑠⟧ ∧ 𝜑) ∀𝑥 :𝑠 . 𝜑 ≡ ∀𝑥 . (𝑥 ∈ ⟦𝑠⟧ → 𝜑)

4.2.2 Many-Sorted Functions. Given sorts 𝑠, 𝑠1, . . . , 𝑠𝑛 , we call a (constant) symbol 𝑓 ∈ Σ a many-
sorted function from 𝑠1, . . . , 𝑠𝑛 to 𝑠 , written 𝑓 : 𝑠1 × · · · × 𝑠𝑛 → 𝑠 , if it satisfies the axiom:

(Function) ∀𝑥1:𝑠1 . . . .∀𝑥𝑛 :𝑠𝑛 . ∃𝑦:𝑠 . 𝑓 𝑥1 · · · 𝑥𝑛 = 𝑦 (3)

Application is left-associative (Definition 2), so 𝑓 𝑥1 · · · 𝑥𝑛 means (· · · (𝑓 𝑥1) · · · 𝑥𝑛). Intuitively,
(Function) requires that 𝑓 𝑥1 · · · 𝑥𝑛 consist of exactly one element, 𝑦, which is an inhabitant of
𝑠 , given that 𝑥1, . . . , 𝑥𝑛 are inhabitants of 𝑠1, . . . , 𝑠𝑛 , respectively. Note that while 𝑓 , 𝑓 𝑥1, 𝑓 𝑥1𝑥2, ...,
𝑓 𝑥1 · · · 𝑥𝑛−1 are all well-formed patterns, they are not required to consist of exactly one element.

4.2.3 Many-Sorted Partial Functions. The axiom (Function) above is not unusual; it translates to
matching logic a standard encoding of many-sorted functions using an unsorted logic (see [Nelson
et al. 2010, pp. 8] for a related discussion). What is a lot harder problem is how to capture partial
functions, which can be undefined in some arguments. Capturing partial functions in a formal
system is not just of theoretical interest. It is also a practical concern that has arisen in the formal
verification of programs with exceptional expressions, such as division by zero or the head of an
empty list, and has resulted in work on partial algebras [Burmeister 1993], exception algebras [Bernot
et al. 1986], error algebras [Gogolla et al. 1984], order-sorted algebras [Goguen and Meseguer 1992],
and various logics for partial functions [Abdallah 1995; Lucio-Carrasco and Gavilanes-Franco 1989].

On the other hand, it is surprisingly easy to capture partial functions in matching logic. We take
the axiom (Function) and change the equality _ = _ to set inclusion _ ⊆ _:

(Partial Function) ∀𝑥1:𝑠1. . . .∀𝑥𝑛 :𝑠𝑛 . ∃𝑦:𝑠 . 𝑓 𝑥1 · · · 𝑥𝑛 ⊆ 𝑦 (4)

Intuitively, (Partial Function) requires 𝑓 𝑥1 · · · 𝑥𝑛 to consist of at most one element. The un-
definedness of 𝑓 on 𝑥1, . . . , 𝑥𝑛 is captured, by 𝑓 𝑥1 · · · 𝑥𝑛 returning the empty set ∅. For notional
simplicity, we will write 𝑓 : 𝑠1 × · · · × 𝑠𝑛 ⇀ 𝑠 to mean that 𝑓 is a partial function from 𝑠1, . . . , 𝑠𝑛 to 𝑠 .
The reason why partial functions can be directly defined using (Partial Function), without

needing to extend or modify matching logic, is due to the pattern matching semantics of matching
logic, where patterns are not restricted to a functional interpretation, and are given a more general,
set-theoretic interpretation, which unifies (both syntactically and semantically) total functions and
FOL terms, predicates and FOL formulas, and partial functions and partial terms.

4.3 Product Sorts

In this and the next sections, we assume the definedness symbol, the inhabitant symbol, and all the
related instruments that are given in Sections 4.1 and 4.2. Our goal in this section is to axiomatize
the product sort 𝑠1 ⊗ 𝑠2, whose (intended) inhabitant is the (set-theoretic) product of the inhabitants
of 𝑠1 and 𝑠2, up to isomorphism. Formally:

Definition 18. Given two sorts 𝑠1, 𝑠2, we consider a functional constant 𝑠1 ⊗ 𝑠2 ∈ Σ, which we
call the product (sort) of 𝑠1 and 𝑠2. We define a function ⟨_, _⟩ : 𝑠1 × 𝑠2 → 𝑠1 ⊗ 𝑠2, called pairing,
where the function notation was introduced in Section 4.2.2. We write ⟨𝜑1, 𝜑2⟩ to mean ⟨_, _⟩ 𝜑1 𝜑2,
obtained by applying ⟨_, _⟩ to 𝜑1, and then to 𝜑2. We define the following two axioms:

(Product) ⟦𝑠1 ⊗ 𝑠2⟧ = ∃𝑥1:𝑠1. ∃𝑥2:𝑠2 . ⟨𝑥1, 𝑥2⟩
(Injectivity) ∀𝑥1:𝑠1.∀𝑥2:𝑠2 .∀𝑦1:𝑠1.∀𝑦2:𝑠2. ⟨𝑥1, 𝑥2⟩ = ⟨𝑦1, 𝑦2⟩ → 𝑥1 = 𝑦1 ∧ 𝑥2 = 𝑦2

Intuitively, ⟨𝑥1, 𝑥2⟩ denotes the pair consisting of 𝑥1 and 𝑥2. (Product) states that the inhabitant of
𝑠1 ⊗ 𝑠2 is the product of the inhabitants of 𝑠1 and 𝑠2. (Injectivity) states that ⟨_, _⟩ is injective.

Proposition 19. For any model 𝑀 validating the axioms in Definition 18, we have 𝑀𝑠1⊗𝑠2 �

𝑀𝑠1 ×𝑀𝑠2 , where we use𝑀𝑠 = ⟦_⟧𝑀 • 𝑠𝑀 to denote the inhabitant of 𝑠 in𝑀 , for any sort 𝑠 .
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4.4 Power Sorts

Our goal in this section is to axiomatize the power sort 2𝑠 , whose (intended) inhabitant is the
powerset of the inhabitant of 𝑠 , up to isomorphism. Formally:

Definition 20. Given a sort 𝑠 , let us consider a functional constant 2𝑠 ∈ Σ, which we call the
power (sort) of 𝑠 . For clarity, we use the Greek letters 𝛼, 𝛽, . . . for element variables whose intended
range is in sort 2𝑠 . Let us define a (constant) symbol extension ∈ Σ, called the extension symbol
(explained later), and define the following axioms:

(Arity) ∀𝛼 :2𝑠 . (extension𝛼) ⊆ ⟦𝑠⟧
(Powerset) 𝑋 ⊆ ⟦𝑠⟧ → ∃𝛼 :2𝑠 . (extension𝛼) = 𝑋

(Extensionality) ∀𝛼 :2𝑠 .∀𝛽 :2𝑠 . (extension𝛼) = (extension 𝛽) → 𝛼 = 𝛽

Note that set variable 𝑋 is free in (Powerset). By Remark 12, it is effectively universally quantified.

Definition 20 needs some explanation. Let us consider an intended model𝑀 , where the inhabitant
of 𝑠 is𝑀𝑠 and the inhabitant of 2𝑠 is𝑀2𝑠 = P(𝑀𝑠 ), i.e., the powerset of𝑀𝑠 . We use 𝑎, 𝑏, · · · ∈ 𝑀𝑠 to
denote elements in𝑀𝑠 and 𝐴, 𝐵, · · · ∈ 𝑀2𝑠 to denote elements in𝑀2𝑠 , i.e., subsets of𝑀𝑠 . Note that 𝛼
is an element variable of sort 2𝑠 , so let us assume it evaluates to some 𝐴 ∈ 𝑀2𝑠 . Then, the intended,
intuitive meaning of (extension𝛼), is that it is a pattern (of sort 𝑠) that is matched by all elements 𝑎
in𝐴. Please note the difference between 𝛼 and (extension𝛼). On one hand, 𝛼 is an element variable
of sort 2𝑠 , so it is matched by one łelementž 𝐴. On the other hand, (extension𝛼) is a pattern of
sort 𝑠 , so it is matched by all elements in the set 𝐴. In other words, 𝐴 is regarded as an individual
łelementž in sort 2𝑠 but a real łsetž in sort 𝑠 , on which the pointwise extension (Definition 7) can
apply. Thus, the matching logic symbol łextensionž takes 𝐴 as an element and returns 𝐴 itself as a
set. This has a similar meaning to the term łextensionž in logic and philosophyÐan extension of a
concept consists of the things to which it applies. Here, we regard the element 𝐴 of the powerset as
an intensional concept and the set 𝐴 of its elements as its extension.
With the above intuition, the axioms in Definition 20 are self-explanatory. (Arity) states that

(extension𝛼) has sort 𝑠 whenever 𝛼 has sort 2𝑠 . (Powerset) states that any subset of the inhabitant
of 𝑠 , ranged by 𝑋 , has a corresponding łelementž denoted 𝛼 whose extension is 𝑋 . Therefore,
the inhabitant of 2𝑠 is at least as large as the powerset of the inhabitant of 𝑠 . On the other hand,
(Extensionality) states that 𝛼 and 𝛽 are equal whenever their extensions are equal, so the
inhabitant of 2𝑠 is at most as large as the powerset of the inhabitant set 𝑠 . Putting the arguments
together, we show that the inhabitant of 2𝑠 is the powerset of the inhabitant of 𝑠 , up to isomorphism:

Proposition 21. For any model𝑀 validating the axioms in Definition 20, we have𝑀2𝑠 � P(𝑀𝑠 ).

The reverse of extension, called intension, can be defined as the following syntactic sugar:

intension𝜑 ≡ ∃𝛼 :2𝑠 . 𝛼 ∧ (extension𝛼 = 𝜑)

Intuitively, 𝜑 has sort 𝑠; (intension𝜑) has sort 2𝑠 , and is matched by the unique element 𝛼 of sort
2𝑠 such that extension𝛼 = 𝜑 ; the uniqueness is guaranteed by the axiom (Extensionality).

Remark 22. Proposition 21 shows that powersets can be completely, finitely axiomatized in
matching logic. This result is known to not hold in FOL, because by the Löwenheim-Skolem
theorem [Löwenheim 1915], if a FOL theory has infinite models, then it has a countable model.
However, using powersets, we can enforce uncountable models by first enforcing an infinite model
and considering its powerset. As an example, we define natural numbers Nat using zero and suc,
and define the standard injectivity axioms zero ≠ suc(𝑥) and suc(𝑥) = suc(𝑦) → 𝑥 = 𝑦 to enforce
Nat to be infinite, as it must contain zero, suc(zero), suc(suc(zero)), etc., which are all distinct. If
powersets could have been completely axiomatizable in FOL, then we could define the powerset of
natural numbers 2Nat that is uncountable, contradicting the Löwenheim-Skolem theorem.
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free variables:
FV(𝑥) = {𝑥} FV(𝑒1 𝑒2) = FV(𝑒1) ∪ FV(𝑒2) FV(𝜆𝑥. 𝜑) ≡ FV(𝜑) \ {𝑥}

𝛼-renaming:
𝜆𝑥 . 𝜑 ≡ 𝜆𝑦. 𝜑 [𝑦/𝑥], for 𝑦 ∉ FV(𝜑)

capture-free substitution (where 𝑦 distinct from 𝑥 and 𝑧 is fresh):
(𝜆𝑥 . 𝜑) [𝜓/𝑥] ≡ 𝜆𝑥. 𝜑 (𝜆𝑥 . 𝜑) [𝜓/𝑦] ≡ 𝜆𝑧. 𝜑 [𝑧/𝑥] [𝜓/𝑦]

Fig. 3. Meta-properties about binder 𝜆, similar to those for the binder ∃ in matching logic (Fig. 1).

4.5 Matching Logic Proof System

There is a Hilbert-style proof system for matching logic that defines the provability relation Γ ⊢ 𝜑
for matching logic theory Γ and pattern 𝜑 . The proof system is not needed in order to understand
the technical results discussed in this paper (see [Chen and Roşu 2019]). We only review some
meta-theorems about the proof system, which are needed in order to prove the subsequent results,
mentioning that any (sound) proof system that has these properties would be equally suitable:3

Proposition 23. If Γ contains the definedness symbol and the axiom (Definedness), then

(1) Γ ⊢ 𝜑 , if 𝜑 is a propositional tautology over patterns;
(2) Γ ⊢ 𝜑1 and Γ ⊢ 𝜑1 → 𝜑2 imply Γ ⊢ 𝜑2;
(3) Γ ⊢ 𝜑 [𝑦/𝑥] → ∃𝑥 . 𝜑 ;
(4) Γ ⊢ 𝜑1 → 𝜑2 and 𝑦 ∉ FV(𝜑2) imply Γ ⊢ (∃𝑦. 𝜑1) → 𝜑2;
(5) Γ ⊢ 𝜑 = 𝜑 ;
(6) Γ ⊢ 𝜑1 = 𝜑2 and Γ ⊢ 𝜑2 = 𝜑3 imply Γ ⊢ 𝜑1 = 𝜑3;
(7) Γ ⊢ 𝜑1 = 𝜑2 implies Γ ⊢ 𝜑2 = 𝜑1;
(8) Γ ⊢ 𝜑1 = 𝜑2 implies Γ ⊢ 𝜓 [𝜑1/𝑥] = 𝜓 [𝜑2/𝑥], known as the Leibniz characterization of equality.

Proposition 23 essentially states that FOL with equality reasoning is supported by the proof
system of matching logic, where patterns are conveniently regarded as either łpredicatesž or łtermsž,
depending on the context. We require Γ to contain the definedness symbol and axiom, because they
are needed to define equality 𝜑1 = 𝜑2, as discussed in Definition 13.
We review the following soundness theorem of the matching logic proof system:

Theorem 24 (Soundness Theorem). Γ ⊢ 𝜑 implies Γ ⊨ 𝜑 .

While several (deductive) completeness results (i.e., Γ ⊨ 𝜑 implies Γ ⊢ 𝜑) have been proved for
some theories Γ in [Chen and Roşu 2019; Roşu 2017], it is incomplete in general for all Γ and 𝜑 .
Fortunately, it does not affect this paper. Instead, we prove a new completeness result as a corollary
of the conservative extension theorem of 𝜆-calculus (Theorem 36), where Γ is the matching logic
theory that captures 𝜆-calculus and 𝜑 is an equation between 𝜆-expressions; see Section 5.

5 𝜆-CALCULUS PRELIMINARIES

The syntax of 𝜆-calculus [Church 1941] is parametric in a set of variables 𝑉 𝜆 , whose elements are
written 𝑥,𝑦, . . . . The set Λ of 𝜆-expressions is inductively defined by the following grammar:

𝑒 F 𝑥 | 𝑒1 𝑒2 | 𝜆𝑥. 𝑒

Free variables FV(𝑒), 𝛼-equivalence 𝑒1 ≡ 𝑒2, and capture-free substitution 𝑒 [𝑒 ′/𝑥] are defined as
usual, shown in Fig. 3. We regard 𝛼-equivalent 𝜆-expressions as identical expressions.

In 𝜆-calculus, we are interested in proving equations of the form 𝑒1 = 𝑒2, for 𝑒1, 𝑒2 ∈ Λ. Equational
reasoning in 𝜆-calculus includes the standard reflexivity, symmetry, transitivity, and congruence

3Note that Γ is different from typing contexts in type systems (see, e.g., [Cardelli 1996]) that share variables with judgment𝜑 .

Here, Γ has variables independent from 𝜑 and its axioms are implicitly universally quantified; see also Remark 12.
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proof rules, and the distinguished (𝛽) axiom schema that specifies the result of function application:

(𝛽) (𝜆𝑥 . 𝑒) 𝑒 ′ = 𝑒 [𝑒 ′/𝑥] for all 𝑥 ∈ 𝑉 𝜆 and 𝑒, 𝑒 ′ ∈ Λ

We write ⊢𝜆 𝑒1 = 𝑒2 to mean that 𝑒1 = 𝑒2 is provable in 𝜆-calculus.

5.1 Our Goal and the Main Challenges

Our first goal is to define a matching logic theory Γ
𝜆 that faithfully captures 𝜆-calculus, in the

sense that 𝜆-expressions are well-formed matching logic patterns and 𝜆-reasoning is captured by
matching logic reasoning. Formally, our goal is to prove the conservative extension theorem:

Γ
𝜆 ⊢ 𝑒1 = 𝑒2

conservativeness−�===============�−
extensiveness

⊢𝜆 𝑒1 = 𝑒2 for all 𝑒1, 𝑒2 ∈ Λ (5)

which says that we can safely reduce 𝜆-calculus reasoning to matching logic reasoning, without
proving fewer or more equations between 𝜆-expressions. Specifically, the extensiveness direction
means that all provable equations between 𝜆-expressions can also be proved in Γ

𝜆 , which is thus
an extension of 𝜆-calculus, while the conservativeness direction says that no additional equations
between 𝜆-expressions can be proved. Note that we are only concerned with equations between
𝜆-expressions. Since matching logic has a richer syntax than 𝜆-calculus, of course there are equations,
e.g. ⊥ = ⊥, which are provable in matching logic but do not even exist in 𝜆-calculus.

Main Challenges. There are two main challenges. The first challenge is to capture the binding
behavior of 𝜆, that is, to define 𝜆𝑥. 𝑒 as syntactic sugar in matching logic such that it satisfies the
properties about free variables, 𝛼-equivalence, and capture-free substitution in Fig. 3. The key
observation is that 𝜆 plays two important roles: (i) it builds a term 𝜆𝑥 . 𝑒 , and (ii) it builds a binding of
𝑥 into 𝑒 . Matching logic allows us to separate these two roles, where we define terms using symbols
and application as shown in Section 4 and bindings using matching logic’s built-in binder ∃.
The other challenge is to prove the conservative extension theorem shown as Eq. (5). The

extensiveness direction is easy, because equational reasoning is supported in matching logic
(Proposition 23). We only need to include all instances of (𝛽) in Γ

𝜆 . The conservativeness direction
is more involved and is a major technical contribution of this paper. Indeed, matching logic has a
richer syntax and a more complex proof system than 𝜆-calculus; we need to show that this more
complex infrastructure cannot be used to prove more equations between 𝜆-expressions.

5.2 Our Plan

We will give two different proofs for the conservativeness of Γ𝜆 , each providing a unique insight
about the construction of Γ𝜆 . The first is based on amodel theory of 𝜆-calculus, discussed in Section 7.
It considers a special class of 𝜆-calculus models, called concrete Cartesian closed category models, or
simply concrete ccc models, which are known to be complete with respect to 𝜆-calculus reasoning
(Lemma 26). This model-based proof is easier to understand due to its close connection to the
models, and is what inspired our encoding of the 𝜆 binder in matching logic (see Eq. (1)). However, it
does not generalize to other logical systems with binders that do not have well-established models.
Hence, in Section 8 we give an alternative conservativeness proof, based on the syntax and proof
derivations of 𝜆-calculus, and not on models. The syntax-based proof does not depend on the
existence of a complete class of models, and is thus easier to generalize to other logical systems.

5.3 Concrete ccc Models of 𝜆-Calculus

We review the concrete Cartesian closed category (ccc) models of 𝜆-calculus [Barendregt 1984, Defini-
tion 5.5.9]. They will be used in the model-based proof of the conservativeness of Γ𝜆 .

Definition 25 ([Berline 2000, Definition 57]). Given an applicative structure (𝐴, _•𝐴_), its set of
representable functions is 𝑅(𝐴)= {𝑓 : 𝐴→𝐴 | there is a 𝑏 ∈ 𝐴 such that 𝑓 (𝑎) = 𝑏 •𝐴 𝑎 for all 𝑎 ∈ 𝐴}.
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Γ
𝜆 ⊢ 𝑒1 = 𝑒2 =⇒1 Γ

𝜆
⊨ 𝑒1 = 𝑒2 =⇒2 𝑀 ⊨ 𝑒1 = 𝑒2 for all matching logic models𝑀 ⊨ Γ

𝜆

⇓3
⊢𝜆 𝑒1 = 𝑒2 ⇐=5 ⊨𝜆 𝑒1 = 𝑒2 ⇐=4 𝐴 ⊨𝜆 𝑒1 = 𝑒2 for all concrete ccc models 𝐴

Fig. 4. The main proof steps of the model-based conservativeness proof of Γ𝜆 .

A pre-model is a triple (𝐴, _•𝐴_,L), where L : 𝑅(𝐴) → 𝐴 is a retraction function such that A◦L is the
identity on 𝑅(𝐴), where A : 𝐴 → 𝑅(𝐴) is defined as A(𝑏) (𝑎) = 𝑏 •𝐴 𝑎 for all 𝑏, 𝑎 ∈ 𝐴. A pre-model 𝐴

is called a concrete ccc model, if the following definition of |𝑒 |𝜆𝜌 is well-defined for every 𝜌 : 𝑉 𝜆 → 𝐴:

(1) |𝑥 |𝜆𝜌 = 𝜌 (𝑥);

(2) |𝑒1𝑒2 |
𝜆
𝜌 = |𝑒1 |

𝜆
𝜌

•𝐴 |𝑒2 |
𝜆
𝜌 ;

(3) |𝜆𝑥. 𝑒 |𝜆𝜌 = L(𝑓
𝜌
𝑒,𝑥 ) where 𝑓

𝜌
𝑒,𝑥 (𝑎) = |𝑒 |𝜆𝜌 [𝑎/𝑥 ] for 𝑎 ∈ 𝐴, and that 𝑓

𝜌
𝑒,𝑥 ∈ 𝑅(𝐴).

Given a concrete ccc model 𝐴, we write 𝐴 ⊨𝜆 𝑒1 = 𝑒2 iff |𝑒1 |
𝜆
𝜌 = |𝑒2 |

𝜆
𝜌 for all 𝜌 . We write ⊨𝜆 𝑒1 = 𝑒2

iff 𝐴 ⊨𝜆 𝑒1 = 𝑒2 for all concrete ccc models 𝐴. In the latter, we say 𝑒1 = 𝑒2 is valid in 𝜆-calculus.

We review two important results about concrete ccc models in the model-based conservativeness
proof, whose main proof steps are shown in Fig. 4. The first result is that concrete ccc models are a
special instance of matching logic models. In other words, Γ𝜆 includes all concrete ccc models as
its validating models. This result will be used in Step 3, from matching logic validity to 𝜆-calculus
validity. The second result is that concrete ccc models are complete with respect to 𝜆-calculus
reasoning, i.e., all valid 𝜆-calculus equations can be proved.4 This known completeness result is
restated in Lemma 26. It will be used in Step 5 in Fig. 4, from 𝜆-calculus validity to provability.

Lemma 26 ([Koymans 1982]). ⊨𝜆 𝑒1 = 𝑒2 implies ⊢𝜆 𝑒1 = 𝑒2 for any 𝑒1, 𝑒2 ∈ Λ.

Other 𝜆-Calculus Models. We discuss the other relevant notions of 𝜆-calculus models and discuss
why we choose the concrete ccc models in our conservativeness proof (given in Section 7).

There are three main notions of models in 𝜆-calculus; see [Manzonetto 2008] for a survey. Firstly,
there are 𝜆-models [Barendregt 1984, Section 5.2], which are combinatory algebras that provide
coherent interpretations to all 𝜆-expressions. Secondly, there are categorical models [Barendregt
1984, Section 5.5], which are given as the reflexive objects of a Cartesian closed category (ccc), where
𝜆-expressions are interpreted as morphisms. Thirdly, there are Hindley-Longo models [Hindley
and Longo 1980], which form an alternative presentation of 𝜆-models and interpret 𝜆-expressions
directly, without translating them to combinatory terms. The concrete ccc models (Definition 25)
in this paper belong to the categorical models, where the underlying categories are strictly concrete
categories (see, e.g., [Barendregt 1984, Definition 5.5.8]).

We choose concrete ccc models because they have a non-categorical set-theoretical presentation
(Definition 25) that fits well with the pattern matching semantics of matching logic. In concrete
ccc models, the interpretation of a 𝜆-expression is inductively defined from the interpretation of
its sub-expressions, so it is more natural to turn concrete ccc models into matching logic models,
needed for the conservativeness proof. In contrast, 𝜆-models and Hindley-Longo models interpret

all 𝜆-expressions at the same time. For example, in Hindley-Longo models, |𝜆𝑥 . 𝑒 |𝜆𝜌 is defined as

some unspecified element that satisfies that |𝜆𝑥 . 𝑒 |𝜆𝜌 •𝐴 𝑎 = |𝑒 |𝜆𝜌 [𝑎/𝑥 ] for all 𝑎. In concrete ccc models,

instead, |𝜆𝑥. 𝑒 |𝜆𝜌 is interpreted explicitly by |𝜆𝑥. 𝑒 |
𝜆
𝜌 = L(𝑓

𝜌
𝑒,𝑥 ), using a given (by the model) retraction

function to encode functions into elements. Therefore, it is more convenient in our context to
consider concrete ccc models, as they provide an explicit, constructive interpretation of 𝜆𝑥 . 𝑒 .

4Here we use the term łcompletenessž to mean deductive completeness, as given in Lemma 26. In the literature on 𝜆-calculus,

representability completeness (of 𝜆-calculus models) is also considered; see related discussion in Section 8.2.2.
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6 DEFINING 𝜆-CALCULUS IN MATCHING LOGIC

In this section we define the matching logic theory Γ
𝜆 that captures 𝜆-calculus. Our definition is

inspired by the concrete ccc models of 𝜆-calculus discussed in Section 5.3. The key ingredient is the
retraction function L that encodes representable functions into elements. Therefore, we first define
representable functions and the retraction function.

Recall that 𝑓
𝜌
𝑒,𝑥 is the representable function as defined in Definition 25, which corresponds to the

interpretation of 𝜆𝑥. 𝑒 under 𝜌 in the concrete ccc model. We can capture 𝑓
𝜌
𝑒,𝑥 by defining its graph:

graph(𝑓
𝜌
𝑒,𝑥 ) =

{(

𝑎, |𝑒 |𝜆𝜌 [𝑎/𝑥 ]

)

| for all elements 𝑎 in the concrete ccc model 𝐴
}

(6)

which contains all the argument-value pairs of 𝑓
𝜌
𝑒,𝑥 . Note that this graph is an element in P(𝐴 ×𝐴),

the powerset of 𝐴 ×𝐴, but not every element in P(𝐴 ×𝐴) is the graph of a representable function.
Therefore, the retraction function L is captured as a partial function from P(𝐴 ×𝐴) to 𝐴 (see
Remark 27) which is defined only on the graphs of representable functions, and undefined elsewhere.

Nowwe start to define Γ𝜆 following the above intuition. Firstly, we include all 𝜆-calculus variables
in 𝑉 𝜆 as element (and not set) variables in Γ

𝜆 . Then, we define four sorts: Var as the sort of 𝜆-
calculus variables; Exp as the sort of 𝜆-expressions; Var ⊗ Exp as the product sort of Var and Exp
(Definition 18); and 2Var⊗Exp as its power sort (Definition 20). Intuitively, 2Var⊗Exp is the sort of all
binary relations, including non-functions, over Var and Exp, because the inhabitant of 2Var⊗Exp is
the powerset of the Cartesian product of the inhabitants of Var and Exp, by Propositions 19 and 21.

Next, we define the subsorting axiom (Section 4.2), ⟦Var⟧ ⊆ ⟦Exp⟧, to specify that all variables
are well-formed 𝜆-expressions. We define a partial function (Section 4.2.3), lambda : 2Var⊗Exp ⇀ Exp,
to represent the retraction function L in Definition 25, although the partial function requirement is
included only for clarity and is technically unnecessary, because it will be automatically validated
by the intended canonical models that we construct in Sections 7 and 8.

Remark 27. We include both sorts Var and Exp in theory Γ
𝜆 so as to be completely faithful w.r.t.

the 𝜆-calculus syntax defined in Section 5, which has two syntactic categories:𝑉 𝜆 for variables and
Λ for expressions. As a result, lambda is a partial function with the power domain 2Var⊗Exp . A valid
alternative is to use 2Exp⊗Exp as the domain. The conservative extension theorem (Theorem 36) still
holds, and its model-based proofs shown in Section 7 are still valid, because the models we will
construct there interpret both Var and Exp to the same inhabitant set.

Now, we define 𝜆-expressions as syntactic sugar in matching logic. The 𝜆-calculus variables
and application are already well-formed matching logic patterns, where 𝑥 ∈ Var is represented
by the element variables 𝑥 and 𝑒1 𝑒2 is represented by the built-in matching logic application 𝑒1 𝑒2.
Abstraction 𝜆𝑥 . 𝑒 is defined as the following syntactic sugar, where we extract the general binding
notation [𝑥 :Var] 𝑒 for clarity and because it can be used to define any other binders, not only 𝜆:

[𝑥 :Var] 𝑒 ≡ intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩ // the binding notation (7)

𝜆𝑥. 𝑒 ≡ lambda [𝑥 :Var] 𝑒 // 𝜆-abstraction (8)

We assume that [𝑥 :Var] 𝑒 binds the tightest, so lambda [𝑥 :Var] 𝑒 is parsed as lambda ( [𝑥 :Var] 𝑒).
Eq. (8) is a logical incarnation of the semantics of 𝜆𝑥 . 𝑒 in the concrete ccc models (Definition 25),

into matching logic. Recall that in a concrete ccc model, |𝜆𝑥. 𝑒 |𝜆𝜌 = L
(

𝑓
𝜌
𝑒,𝑥

)

, where 𝑓
𝜌
𝑒,𝑥 (𝑎) = |𝑒 |𝜆𝜌 [𝑎/𝑥 ] .

By Remark 10, ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ denotes the union set
⋃

𝑥 {(𝑥, 𝑒)}, namely the graph of 𝑓
𝜌
𝑒,𝑥 . (Note

that ∀𝑥 :Var . ⟨𝑥, 𝑒⟩ also yields the correct binding behavior, but it does not have the right semantic
meaning of a graph.) The binding notation [𝑥 :Var] 𝑒 takes this graph as a set of pairs and packs
them into one object in the power sort 2Var⊗Exp . Then, this packed object is passed to lambda, which
decodes/retracts it into the intended interpretation of 𝜆𝑥. 𝑒 . For now, we do not know any property
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Variables:

𝑥,𝑦, . . . element variables, including all 𝜆-calculus variables in 𝑉 𝜆

Symbols:

Var a sort constant
Exp a sort constant
lambda the retraction symbol, used to capture 𝜆

Axioms:

(Subsorting) ⟦Var⟧ ⊆ ⟦Exp⟧
(𝛽) ∀𝑥1:Var . · · · ∀𝑥𝑛 :Var . (𝜆𝑥 . 𝑒) 𝑒

′
= 𝑒 [𝑒 ′/𝑥]

where 𝑥1, . . . , 𝑥𝑛 are all the free variables in FV((𝜆𝑥. 𝑒) 𝑒 ′).

Fig. 5. Summary of the matching logic theory Γ
𝜆 that captures 𝜆-calculus (infrastructure definitions omitted)

about lambda, except that it is a partial function from 2Var⊗Exp to Exp. Its intended behavior will be
axiomatized by the axiom schema (𝛽)Ðthe axiom schema that characterizes 𝜆-abstraction and the
semantics of 𝜆.
We emphasize that the encoding of 𝜆𝑥. 𝑒 in Eqs. (7)-(8) is only possible because matching logic

treats terms and formulas uniformly as patterns, and it allows (FOL-style) quantification to be built
on terms. A similar definition will immediately fail in FOL, because FOL enforces a clear distinction
between terms and formulas at the syntax level and quantification only applies to formulas.

Remark 28. Under the above notations, all 𝜆-expressions are well-formed matching logic patterns.
Particularly, the syntactic sugar 𝜆𝑥. 𝑒 in Eqs. (7)-(8) satisfies all binding properties about 𝜆 in Fig. 3.

Definition 29. Let Γ𝜆 be the matching logic theory that contains all the axioms and notations
that we have defined in this section, and all instances of the (𝛽) axiom schema, as shown in Fig. 5.

Remark 30. Remark 28 holds, not because of the axioms in Γ
𝜆 , but because of the syntactic sugar

definition in Eqs. (7)-(8) and the binding behavior of ∃. In other words, the binding behavior of 𝜆 is
directly inherited from from the binding behavior of the built-in binder ∃ in matching logic, and is
not specified by axioms. The axioms specify the semantic behavior of 𝜆, not its binding behavior.

We finish this section by proving the extensiveness theorem for 𝜆-calculus.

Theorem 31. ⊢𝜆 𝑒1 = 𝑒2 implies Γ𝜆 ⊢ 𝑒1 = 𝑒2, for all 𝑒1, 𝑒2 ∈Λ.

Proof. By Proposition 23, because Γ𝜆 contains all instances of (𝛽). □

7 MODEL-BASED CONSERVATIVENESS PROOF

Here we prove the conservativeness of Γ𝜆 , making use of the concrete ccc models of 𝜆-calculus
discussed in Section 5.3. The main proof steps have been discussed in Section 5 and summarized in
Fig. 4. The only nontrivial one is Step 3, which requires to show that𝑀 ⊨ 𝑒1 = 𝑒2 for all matching
logic models𝑀 ⊨ Γ

𝜆 implies 𝐴 ⊨𝜆 𝑒1 = 𝑒2 for all concrete ccc models 𝐴. The following is the key
lemma establishing the connection between concrete ccc models and matching logic models of Γ𝜆 :

Lemma 32. For any concrete ccc model 𝐴 and any valuation 𝜌 into 𝐴, there exists a matching logic

model𝑀𝐴
⊨ Γ

𝜆 and a valuation 𝜌𝐴 into𝑀𝐴 such that |𝑒 |𝜌𝐴 =

{

|𝑒 |𝜆𝜌

}

for every 𝑒 ∈ Λ.

Proof. We give the high-level proof idea. Let us fix a concrete ccc model (𝐴, _•𝐴_,L), where 𝑅(𝐴)
is its set of representable functions and L : 𝑅(𝐴) → 𝐴 is its retraction function. Let the carrier set
𝑀𝐴 include 𝐴. Recall that Γ𝜆 defines sorts Var and Exp, and partial function lambda from 2Var⊗Exp

to Exp (Fig. 5). Since 𝐴 is the domain of both variable valuations and expression interpretations in
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the concrete ccc model, in 𝑀𝐴 we let 𝐴 be the inhabitants of both Var and Exp (see Remark 27),
validating axiom (Subsorting). We define lambda𝑀𝐴 accordingly to the retraction function L; i.e.,
lambda𝑀𝐴 • 𝑃 = {L(𝑓 )} whenever 𝑃 = graph(𝑓 ) and 𝑓 ∈ 𝑅(𝐴), and lambda𝑀𝐴 • 𝑃 = ∅, otherwise.

We define 𝜌𝐴 as 𝜌𝐴 (𝑥) = 𝜌 (𝑥), for every 𝑥 ∈ 𝑉 𝜆 , and prove that |𝑒 |𝜌𝐴 = {|𝑒 |𝜆𝜌 } for every
𝑒 ∈ Λ. The proof is based on structural induction on 𝑒 and the only nontrivial case is when 𝑒

is 𝜆𝑥 . 𝑒1. In this case, we have |𝜆𝑥. 𝑒1 |𝜌𝐴 = |lambda (intension (∃𝑥 :Var . ⟨𝑥, 𝑒1⟩)) |𝜌𝐴 = lambda𝑀𝐴 •

|intension (∃𝑥 :Var . ⟨𝑥, 𝑒1⟩) |𝜌𝐴 = lambda𝑀𝐴 •|∃𝑥 :Var . ⟨𝑥, 𝑒1⟩) |𝜌𝐴 = lambda𝑀𝐴 •
⋃

𝑎∈𝐴{(𝑎, |𝑒1 |𝜌𝐴 [𝑎/𝑥 ])}

= lambda𝑀𝐴 •
⋃

𝑎∈𝐴{(𝑎, |𝑒1 |
𝜆
𝜌 [𝑎/𝑥 ])} = lambda𝑀𝐴 • graph(𝑓

𝜌
𝑒1,𝑥 ) = {L(𝑓

𝜌
𝑒1,𝑥 )} = {|𝜆𝑥. 𝑒1 |

𝜆
𝜌 }.

Finally, we show that𝑀𝐴 validates (𝛽). Using the above result, for any 𝑥 ∈ 𝑉 𝜆 , 𝑒, 𝑒 ′ ∈ Λ, and 𝜌 ,

we have that | (𝜆𝑥 . 𝑒)𝑒 ′ |𝜆𝜌 = |𝑒 [𝑒 ′/𝑥] |𝜆𝜌 in 𝐴 implies | (𝜆𝑥. 𝑒)𝑒 ′ |𝜌𝐴 = |𝑒 [𝑒 ′/𝑥] |𝜌𝐴 in 𝑀𝐴. Noting that

𝜌𝐴 is arbitrary (as 𝜌 is arbitrary),𝑀𝐴 validates (𝛽). □

Remark 33. The operations, intension and lambda, have been crucial in the proof. Without them,
the pattern ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ itself is merely the graph set and is not even a functional pattern (in the
sense discussed in Section 4.2.2), and thus cannot be directly used to interpret 𝜆𝑥 . 𝑒 .

Using Lemma 32, we can immediately prove Step 3 in Fig. 4:

Lemma 34. If𝑀 ⊨ 𝑒1 = 𝑒2 for all models𝑀 ⊨ Γ
𝜆 , then 𝐴⊨𝜆 𝑒1 = 𝑒2 for all concrete ccc models 𝐴.

Proof. Let 𝐴 be any concrete ccc and 𝜌 be any valuation. By Lemma 32, there exists a matching

logic model𝑀𝐴
⊨ Γ

𝜆 and a valuation 𝜌𝐴 such that |𝑒 |𝜌𝐴 = {|𝑒 |𝜆𝜌 } for any 𝑒 ∈ Λ. Since𝑀𝐴
⊨ 𝑒1 = 𝑒2,

we have |𝑒1 |𝜌𝐴 = |𝑒2 |𝜌𝐴 , and thus |𝑒1 |
𝜆
𝜌 = |𝑒2 |

𝜆
𝜌 . Since 𝜌 is any valuation, we have 𝐴 ⊨𝜆 𝑒1 = 𝑒2. □

Theorem 35. Γ𝜆 ⊢ 𝑒1 = 𝑒2 implies ⊢𝜆 𝑒1 = 𝑒2, for all 𝑒1, 𝑒2 ∈ Λ.

Proof. See Fig. 4, where Step 1 is by Theorem 24; Step 2 is by Definition 11; Step 3 is by Lemma 34;
Step 4 is by Definition 25; and Step 5 is by Lemma 26. □

Theorem 35 together with Theorem 31 show that Γ𝜆 is a conservative extension of 𝜆-calculus. In
fact, we prove the following equivalence theorem (for 𝑒1, 𝑒2 ∈ Λ):

Theorem 36. These are equivalent: (1) Γ𝜆 ⊢ 𝑒1 = 𝑒2; (2) Γ
𝜆
⊨ 𝑒1 = 𝑒2; (3) ⊨𝜆 𝑒1 = 𝑒2; (4) ⊢𝜆 𝑒1 = 𝑒2.

Proof. (1) =⇒ (2) is by Theorem 24. (2) =⇒ (3) is by Lemma 34. (3) =⇒ (4) is by Lemma 26. (4)
=⇒ (1) is by Theorem 35. Note: Conservative extension theorem is the equivalence (1)⇐⇒ (4). □

Remark 37. The equivalence (2)⇐⇒ (4) shows the (deductive) completeness of the matching logic
models of Γ𝜆 with respect to 𝜆-calculus. By defining 𝜆-calculus in matching logic, we automatically
obtain, from the model theory of matching logic, models that are complete to 𝜆-calculus.

8 SYNTAX-BASED CONSERVATIVENESS PROOF

In this section we show an alternative conservativeness proof of Theorem 35 that is entirely based
on the syntactic structure of 𝜆-expressions, and thus is easier to generalize to other logical systems
and binders, especially those which do not have well-established models. This syntax-based proof
also shows that Γ𝜆 is representationally complete for 𝜆-calculus; see Section 8.2.2.

8.1 Proof Overview: Using the Term Model to Prove the Conservativeness Theorem

We build a special matching logic model 𝑇 ⊨ Γ
𝜆 , which we call the term model of 𝜆-calculus,5 and

follow the term algebra technique [Bell and Machover 1977; Hasenjaeger 1953; Quackenbush 1988]:

5In the literature on 𝜆-calculus, term models have a different meaning. For example, in [Barendregt 1984], term models are

special 𝜆-calculus models constructed based on the combinatory algebra semantics; see Section 8.2.1 for a comparison.
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𝑇 has as elements the equivalence classes of 𝜆-expressions modulo 𝛼𝛽-equivalence, and each 𝑒 ∈ Λ

is interpreted in 𝑇 as the equivalence class containing itself, [𝑒]. Formally, we will prove this:

Theorem 38. Let [𝑒] = {𝑒 ′ ∈ Λ | ⊢𝜆 𝑒 = 𝑒 ′} be the equivalence class of 𝑒 modulo 𝛼𝛽-equivalence.

Let [Λ] = {[𝑒] | 𝑒 ∈ Λ} be the set of all these classes. Then, there is a matching logic model 𝑇 ⊨ Γ
𝜆 ,

called term model, and a valuation 𝜌𝑇 , called term valuation, such that |𝑒 |𝜌𝑇 = {[𝑒]} for all 𝑒 ∈ Λ.

Remark 39. For distinct variables 𝑥,𝑦 ∈ 𝑉 𝜆 , we have [𝑥] ≠ [𝑦] [Barendregt 1984, Fact 2.1.37].
Clearly, 𝑥 ∈ [𝑥], but [𝑥] also includes infinitely many expressions: (𝜆𝑦.𝑦)𝑥 , (𝜆𝑦.𝑦) ((𝜆𝑦.𝑦)𝑥), etc.

We will construct𝑇 in Section 8.2. For now, we show how to prove Theorem 35 using Theorem 38:

Syntax-Based Proof of Theorem 35. We need to prove Γ𝜆 ⊢ 𝑒1 = 𝑒2 implies ⊢𝜆 𝑒1 = 𝑒2:

Γ
𝜆 ⊢ 𝑒1 = 𝑒2 implies Γ

𝜆
⊨ 𝑒1 = 𝑒2 by Theorem 24

implies 𝑇 ⊨ 𝑒1 = 𝑒2 by Definition 11

implies |𝑒1 |𝜌𝑇 = |𝑒2 |𝜌𝑇 by Proposition 14

implies [𝑒1] = [𝑒2] by Theorem 38

implies ⊢𝜆 𝑒1 = 𝑒2 by Definition of [𝑒] in Theorem 38. □

8.2 Construction of the Term Model 𝑇 and the Term Valuation 𝜌𝑇

In this section we construct 𝑇 and show that 𝑇 ⊨ Γ
𝜆 . Like for the matching logic model of Γ𝜆 in

the proof of Lemma 32, we need to give interpretations to the sorts Var and Exp, as well as to
the retraction function lambda. For Var and Exp, we define their inhabitants as 𝑇Var = [𝑉 𝜆] and
𝑇Exp = [Λ], where [𝑉 𝜆] and [Λ] are the set of equivalence classes of variables and 𝜆-expressions.

Clearly, we have [𝑉 𝜆] ⊆ [Λ], which validates the axiom (Subsorting) ⟦Var⟧ ⊆ ⟦Exp⟧. We
define the interpretation of application on 𝜆-expressions as the application in 𝜆-calculus, i.e.,
[𝑒1] • [𝑒2] = [𝑒1 𝑒2] for any 𝑒1, 𝑒2 ∈ Λ. Note that this definition is well-defined, because ⊢𝜆 𝑒1 𝑒2 = 𝑒 ′1 𝑒

′
2

whenever ⊢𝜆 𝑒1 = 𝑒 ′1 and ⊢𝜆 𝑒2 = 𝑒 ′2. Finally, we define the interpretation lambda𝑇 such that

lambda𝑇 •

(

⋃

𝑧∈𝑉 𝜆

(

[𝑧], [𝑒 [𝑧/𝑥]]
)

)

=
{

[𝜆𝑥. 𝑒]
}

, for any 𝑥 ∈ 𝑉 𝜆 and 𝑒 ∈ Λ. (9)

and lambda𝑇 • 𝑃 = ∅, if 𝑃 is not a graph of the above form.
The construction of 𝑇 , especially Eq. (9), is critically depending on the matching logic encoding

𝜆𝑥. 𝑒 ≡ lambda (intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩). The 𝛼-equivalence 𝜆𝑥 . 𝑒 ≡ 𝜆𝑧. (𝑒 [𝑧/𝑥]) is captured, both
syntactically and semantically, by collecting the pairs ⟨𝑧, 𝑒 [𝑧/𝑥]⟩ for all 𝑧, using the matching
logic pattern ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ (see Remark 10 for the connection between the ∃-patterns and the
set-theoretic unions). Therefore, ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ encapsulates all the information about [𝜆𝑥 . 𝑒], which
is packed by intension and passed to lambda, and then retracted to restore the original expression
𝜆𝑥. 𝑒 . The following proposition shows that the condition in Eq. (9) on lambda𝑇 is not inconsistent:

Proposition 40. [𝜆𝑥. 𝑒] = [𝜆𝑥 ′. 𝑒 ′], whenever
⋃

𝑧∈𝑉 𝜆

( [𝑧], [𝑒 [𝑧/𝑥]]) =
⋃

𝑧∈𝑉 𝜆

( [𝑧], [𝑒 ′[𝑧/𝑥 ′]]) (10)

Proof. Assume the opposite, i.e., [𝜆𝑥. 𝑒] ≠ [𝜆𝑥 ′. 𝑒 ′]. Let 𝑧∗ ∈ 𝑉 𝜆 be a fresh variable that does
not occur in 𝜆𝑥. 𝑒 or 𝜆𝑥 ′. 𝑒 ′. Then we have 𝜆𝑥. 𝑒 ≡ 𝜆𝑧∗ . 𝑒 [𝑧∗/𝑥] and 𝜆𝑥 ′. 𝑒 ′ ≡ 𝜆𝑧∗ . 𝑒 ′[𝑧∗/𝑥 ′]. By the
assumption, we have [𝜆𝑧∗ . 𝑒 [𝑧∗/𝑥]] ≠ [𝜆𝑧∗ . 𝑒 ′[𝑧∗/𝑥 ′]], and thus [𝑒 [𝑧∗/𝑥]] ≠ [𝑒 ′[𝑧∗/𝑥 ′]]. Noting
that [𝑧1] = [𝑧2] iff 𝑧1 = 𝑧2, for every 𝑧1, 𝑧2 ∈ 𝑉 𝜆 (Remark 39), we have that the pair ( [𝑧∗], [𝑒 [𝑧∗/𝑥]])
is in the LHS of Eq. (10) but not its RHS, which is a contradiction. □
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So far, we have constructed the term model 𝑇 . We now define the term valuation 𝜌𝑇 . Let
VarVal = {𝜌 | 𝜌 (𝑥) ∈ [𝑉 𝜆] for all 𝑥 ∈𝑉 𝜆} be the set of valuations that map 𝜆-calculus variables
(which have been taken as matching logic element variables; see Section 6) to the equivalence
classes of 𝜆-calculus variables, and not any 𝜆-expressions. We define the term valuation 𝜌𝑇 , as
𝜌𝑇 (𝑥) = [𝑥] for every 𝑥 ∈ 𝑉 𝜆 . Clearly, 𝜌𝑇 ∈ VarVal.

Proposition 41. |𝑒 |𝜌𝑇 = {[𝑒]}, and |𝑒 |𝜌 [𝜌 (𝑧)/𝑥 ] = |𝑒 [𝑧/𝑥] |𝜌 for all 𝜌 ∈ VarVal.

Proof. We prove both properties simultaneously by induction on the 𝜆-depth 𝑑 (𝑒) of 𝑒 , the
maximum number of nested 𝜆 binders in 𝑒 . If 𝑑 (𝑒) = 0 then 𝑒 is a variable or is built from only
application and has no 𝜆 abstraction. In this case, both properties can be proved by another structural
induction on 𝑒 . If 𝑑 (𝑒) ≥ 1 then 𝑒 has either the form 𝑒1 𝑒2 where 𝑑 (𝑒1), 𝑑 (𝑒2) ≤ 𝑑 (𝑒), or the form
𝜆𝑥. 𝑒1 where 𝑑 (𝑒1) ≤ 𝑑 (𝑒) − 1. Then another structural induction on 𝑒 proves both properties. □

Proposition 42. If ⊢𝜆 𝑒 = 𝑒 ′, then |𝑒 |𝜌 = |𝑒 ′ |𝜌 for any 𝜌 ∈ VarVal.

Proof. Note that the interpretation of a 𝜆-expression relies on its free variables. Suppose FV(𝑒) ∪
FV(𝑒 ′) = {𝑥1, . . . , 𝑥𝑛} and 𝜌 (𝑥𝑖 ) = [𝑦𝑖 ] for 𝑖 ∈ {1, . . . , 𝑛}. By Remark 39, 𝑦𝑖 is the unique variable
that is in [𝑦𝑖 ]. Since 𝜌 equals to 𝜌𝑇 [[𝑦1]/𝑥1] · · · [[𝑦𝑛]/𝑥𝑛] restricted on 𝑥1, . . . , 𝑥𝑛 , we have |𝑒 |𝜌 =

|𝑒 |𝜌𝑇 [ [𝑦1 ]/𝑥1 ] ·· · [ [𝑦𝑛 ]/𝑥𝑛 ] . By Proposition 41, |𝑒 |𝜌𝑇 [ [𝑦1 ]/𝑥1 ] ·· · [ [𝑦𝑛 ]/𝑥𝑛 ] = |𝑒 [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛] |𝜌𝑇 =

{[𝑒 [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛]]}; similarly |𝑒 ′ |𝜌 = {[𝑒 ′[𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛]]}. Then, ⊢𝜆 𝑒 [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛] =
𝑒 ′[𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛], i.e., [𝑒 [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛]] = [𝑒 ′[𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛]]. Hence, |𝑒 |𝜌 = |𝑒 ′ |𝜌 . □

The only thing left is to prove Theorem 38. We have shown that |𝑒 |𝜌𝑇 = {[𝑒]} for every 𝑒 ∈ Λ,
in Proposition 41. It remains to show that 𝑇 validates (𝛽), i.e., | (𝜆𝑥. 𝑒) 𝑒 ′ |𝜌 = |𝑒 [𝑒 ′/𝑥] |𝜌 for all
𝜌 ∈ VarVal, which follows immediately from Proposition 42. Note that we only need to consider
valuations in VarVal because all variables in (𝛽) are quantified over the sort Var .

8.2.1 Comparing Our Term Model 𝑇 to the Classical Notion of Term Models in 𝜆-Calculus. In the
literature on 𝜆-calculus, a term model [Barendregt 1984, Definition 5.2.11] is a 𝜆-model (Example 6),
where the underlying carrier set 𝐴 is [Λ], the application function is the application function over
equivalence classes, and the two special constants are 𝑘 = [𝜆𝑥 . 𝜆𝑦. 𝑥] and 𝑠 = [𝜆𝑥 . 𝜆𝑦. 𝜆𝑧. (𝑥𝑧) (𝑦𝑧)];
we will denote this 𝜆-model as 𝐴 and call it a classical term model, to not confuse it with our term
model𝑇 . Clearly,𝑇 and𝐴 represent different approaches to capture 𝜆-expressions. While𝐴 uses the
name-free, combinators approach, where 𝜆 is handled by abstraction elimination, our term model 𝑇
gives an explicit and constructive interpretation to 𝜆, as shown in Eq. (9).

8.2.2 The Representabiltiy Problem. There has been a long-standing, concerning and open problem
in the study of 𝜆-calculus, called the representability problem [Berline 2006, pp. 8], which asks if a
given class of 𝜆-calculus models is representationally complete, in the sense that there exists a model
in the given class such that any two expressions 𝑒1 and 𝑒2 are provably equal if and only if they
are interpreted as the same element/value in that model. Representability completeness indicates
that a class of 𝜆-calculus models is sufficient in capturing the formal reasoning in 𝜆-calculus, so
one may reduce the study of formal reasoning in 𝜆-calculus to the study of models, where more
mathematical tools and techniques can be applied. Hence, reduction is the main motivation.
𝜆-calculus models are broadly divided into syntactic models and non-syntactic models [Manzonetto

2008, pp. 13], depending on whether their construction is based on the syntax and provability of
𝜆-calculus or not. All the classical term models in 𝜆-calculus, as well as our particular matching
logic term model in Section 8.2, are syntactic models. Syntactic models are often representationally
complete, but studying them tends to be as hard as studying the syntax and formal reasoning
directly, and thus the reduction to syntactic models usually does not help simplify the study of
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𝜆-calculus. Thus, for decades researchers have been searching for and studying sub-classes of non-
syntactic concrete ccc models, hoping they are also representationally complete. So far, three main
such sub-classes have been identified, known as themain semantics of 𝜆-calculus: Scott’s continuous
semantics [Scott 1972], Berry’s stable semantics [Berry 1978; Girard 1986], and Bucciarelli-Ehrhard
strongly stable semantics [Bucciarelli and Ehrhard 1993]. The representability problem for the main
semantics (and their sub-classes) has remained largely open as of today, except for some negative
results proved for some sub-classes (e.g., graph models [Bucciarelli and Salibra 2004]).

Theorem 38 shows that the class of matching logic models of Γ𝜆 is representationally complete,
positively answering the representability problem for our matching logic semantics of 𝜆-calculus.
Our proof does not rely on any known results about the representational completeness of any
existing semantics; instead, it is entirely based on the model theory of matching logic, which is not
specific to 𝜆-calculus but which allows for an appropriate axiomatization of 𝜆-calculus as a theory
that is hereby endowed with the desired representationally complete models automatically. We
can push Theorem 38 even further to any equational extensions of 𝜆-calculus, known as 𝜆-theories.
Indeed, the definition of the equivalence class [𝑒] as the set of 𝛼𝛽-equivalent expressions of 𝑒 ,
has not been critical in the proof of Theorem 38, and the conclusion still holds if we consider
any equivalence class [𝑒] that includes the basic 𝛼𝛽-equivalence. Therefore, we conclude that the
matching logic definition of 𝜆-calculus is representationally complete for all 𝜆-theories.
Although we do not solve any of the existing open problems, our work suggests the matching

logic can be a viable alternative to the existing 𝜆-calculus models within the main semantics. The
matching logic models are as good as the existing models for 𝜆-calculus in terms of theoretical
properties w.r.t. formal reasoning and semantics, yet unlike the existing models, they are general in
the sense that they are not crafted specifically for 𝜆-calculus, but are obtained from the matching
logic theory Γ

𝜆 . We give a general solution for all the binders, which for 𝜆-calculus is as good as
the state of the art, considering both the proof-theoretic and the model-theoretic aspects.

9 DEFINING BINDERS IN OTHER LOGICAL SYSTEMS USING MATCHING LOGIC

We showed how to capture the binder 𝜆 in matching logic as the following notation (Eqs. (7)-(8)):

𝜆𝑥 . 𝑒 ≡ lambda [𝑥 :Var] 𝑒 (11)

We defined a matching logic theory, Γ𝜆 (shown in Fig 5), and proved the conservative extension
theorem for 𝜆-calculus, Eq. (5). In this section we show that our approach is not specific to 𝜆-
calculus. We provide evidence that matching logic can serve as a general approach to dealing with
binders. We will show how to use patterns similar to Eq. (11) to define the binders in a variety of
logical systems, including System F [Girard 1972; Reynolds 1974], pure type systems [Barendregt
1993], 𝜋-calculus [Milner et al. 1992], and more, and prove a corresponding conservative extension
theorem for each of them. To do that, several challenges need to be solved.

A first challenge is that binders can have more complex binding behavior than in 𝜆-calculus; see
Fig. 6. For example, 𝜆𝑥 :𝑒1. 𝑒2 in System F binds 𝑥 within 𝑒2, but not in 𝑒1; Inp(𝑥,𝑦, 𝑒) in 𝜋-calculus
has the binding variable in the second position (i.e., 𝑦), and not the first position. We deal with
this binding behavior by desugaring to binders whose binding variable is their first argument and
is bound within the second argument only; that is, we desugar an arbitrary binder to a binder
of the form 𝑏 (𝑥, 𝑒1, . . . , 𝑒𝑛), where 𝑥 is bound in 𝑒1 but not in 𝑒2, . . . , 𝑒𝑛 . Clearly, this desugaring
process is just a sequence of argument swappings. Then, we further desugar 𝑏 (𝑥, 𝑒1, . . . , 𝑒𝑛) to
𝑏 ′(𝑏 ′′(𝑥, 𝑒1), 𝑒2, . . . , 𝑒𝑛), where 𝑏

′ is a (binding-free) symbol and 𝑏 ′′ is a binder that binds 𝑥 to 𝑒1,
just like 𝜆 in 𝜆-calculus. Finally, we define 𝑏 ′′(𝑥, 𝑒1) as the following syntactic sugar:

𝑏 ′′(𝑥, 𝑒) ≡ retraction𝑏 [𝑥 :Var] 𝑒 (12)
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Constructs Binding Behavior Meaning Origins

𝜆𝑥 . 𝑒 binding 𝑥 into 𝑒 function abstraction 𝜆-calculus
𝜆𝑥 :𝑒1. 𝑒2 binding 𝑥 into 𝑒2 function abstraction System F
𝜆𝑡 . 𝑒 binding 𝑡 into 𝑒 type abstraction System F
Π𝑡 . 𝑒 binding 𝑡 into 𝑒 Π-type constructor System F
𝜆𝑥 :𝑒1. 𝑒2 binding 𝑥 into 𝑒2 function abstraction Pure type system
𝜋𝑥 :𝑒1 . 𝑒2 binding 𝑥 into 𝑒2 type abstraction Pure type system
Inp(𝑥,𝑦, 𝑒) binding 𝑦 into 𝑒 input process 𝜋-calculus
𝜈𝑦. 𝑒 binding 𝑦 into 𝑒 new process name creation 𝜋-calculus
Bout(𝑒1, 𝑥,𝑦, 𝑒2) binding 𝑦 into 𝑒2 bound output transition 𝜋-calculus
Inp(𝑒1, 𝑥,𝑦, 𝑒2) binding 𝑦 into 𝑒2 input transition 𝜋-calculus

Fig. 6. Some example binding constructs and their binding behavior in logical systems.

in the same way as in Eq. (11), except that here we use a new retraction symbol retraction𝑏 that is
specific to the binder 𝑏. Each binder has its own retraction symbol, but the other infrastructure
symbols, such as products, powersets, and the binding notation [𝑥 :Var] 𝑒 , are the same. From now
on, we will only consider binders 𝑏 (𝑥, 𝑒) that bind 𝑥 within 𝑒 , for technical convenience.

A second challenge is that logical systems featuring bindings are very different from each other,
in terms of the kinds of logical reasoning that is carried out in them. For example, System F derives
typing judgments Γ ⊲ 𝑒1:𝑒2 to mean that 𝑒1 has type 𝑒2 under typing environment Γ; 𝜋-calculus

derives transitions 𝑒1
act
−−→ 𝑒2 to mean that process 𝑒1 transits by action act to process 𝑒2. It is tedious

and non-systematic to consider these logical systems separately, because we would need to capture
their specific logical reasoning and prove the conservative extension theorem for each of them,
more or less similarly to the syntax-based proof in Section 8.

Remark 43. The current K framework implementation provides a łbinderž attribute, which allows
one to define a language construct that binds all variables occurring in its first argument within
its other arguments. The results demonstrated in this paper, particularly this section, will be used
to improve K and let it support binders with more complex binding behaviors. The reader who is
interested in seeing examples about the current K support for binders may look at [K Team 2020],
where the łbinderž attribute is used to define the syntax of 𝜆-calculus.

To capture the various logical systems featuring bindings more systematically, we employ a
parametric framework for binders, called term-generic logic [Popescu and Roşu 2015] (TGL). TGL
is a parametric variant of FOL, whose syntax is parametric on a set of (generic) terms that are
not constructed from constants and functions, but defined axiomatically. When we instantiate
TGL with the term syntax of a given system (e.g., 𝜆-calculus, System F, 𝜋-calculus, etc), it becomes
a (first-order) meta-logic of that system and can be used to specify and reason about its meta-
properties. Using TGL, we give a systematic treatment of binders in the various logical systems.
We will capture TGL in matching logic and prove a conservative extension theorem for TGL, from
which the conservative extension theorems for the other logical systems follow as corollaries.

Why not use TGL directly then, but instead use matching logic? There are two reasons. Firstly,
TGL in its full generality is not implementable, because it does not deal with any concrete syntax
of binders. Its notion of (generic) terms is given axiomatically and needs to be instantiated, which
is what we will do in Section 9.1, where we instantiate TGL to bridge matching logic and other
logical systems with binders. The second reason is that TGL is a logic specifically designed for
binders, while matching logic serves as the unifying logical foundation for the K framework, as
discussed in Section 1 and other places in the paper. Therefore, matching logic supports reasoning
in many mathematical domains other than binders, and thus it is more practical than TGL.
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We next first introduce TGL in Section 9.1 and then its matching logic definition in Section 9.2.

9.1 Term-Generic Logic (TGL) Preliminaries

TGL [Popescu and Roşu 2015] is a variant of many-sorted FOL whose syntax is parametric in a
(generic) term set that is defined axiomatically. In TGL, any set 𝑇 exporting two operationsÐfree
variables FV(𝑒) and capture-free substitution 𝑒 [𝑒 ′/𝑥]Ðand satisfying the conditions in [Popescu
and Roşu 2015, Definition 2.1], forms a generic term set. TGL formulas are built like in FOL,
from predicates 𝜋 (𝑒1, . . . , 𝑒𝑛), equations 𝑒1 = 𝑒2, and standard connectives ∧,¬, ∃, except that
𝑒1, . . . , 𝑒𝑛 are generic terms, that is, arbitrary elements in 𝑇 . The metatheory of TGL, including its
semantics and models, terms/formulas interpretation, proof system, and, importantly, a soundness
and completeness theorem, have been studied and presented in detail in [Popescu and Roşu 2015].

For concreteness, we will not introduce TGL in its full generality. Instead, we instantiate TGLwith
a concrete, constructive term syntax with binders (defined below) and introduce the metatheory of
that TGL instance. From the discussion at the beginning of Section 9, this term syntax is sufficient
to capture the binders in various logical systems with more complex bindings (Fig. 6).

Definition 44. A binder syntax is a tuple (𝑆,𝑉 , 𝐹, 𝐵), where

(1) 𝑆 is a set of sorts denoted 𝑠, 𝑟 , possibly with subscripts; we use 𝑠 ∈ 𝑆∗ to mean a list of sorts;
(2) 𝑉 = {𝑉𝑠 }𝑠∈𝑆 is a sort-wise disjoint family of variables denoted 𝑥 :𝑠 , 𝑦:𝑠 , etc;
(3) 𝐹 = {𝐹𝑠,𝑟 }𝑠∈𝑆∗,𝑠∈𝑆 is a family of many-sorted operations of argument sorts 𝑠 and result sort 𝑟 ;
(4) 𝐵 = {𝐵𝑠,𝑠′,𝑟 }𝑠,𝑠′,𝑟 ∈𝑆 is a family of binders, where 𝑏 (𝑥 :𝑠, 𝑒) binds 𝑥 :𝑠 to 𝑒 (of sort 𝑠 ′) and returns

a term of sort 𝑟 , for each 𝑏 ∈ 𝐵𝑠,𝑠′,𝑟 .

We use TGLTerm to denote the set of terms generated by the above syntax, where free variables,
𝛼-equivalence, and capture-free substitution are defined in the usual way. We omit sorts when they
can be inferred. Note that when 𝐵 = ∅, rules (1)-(3) generate the standard FOL terms.

Remark 45. TGLTerm forms a TGL generic term set in [Popescu and Roşu 2015, Definition 2.1].

TGL formulas, interpretations, validity, and provability are defined in the standard way, (al-
most) identical to FOL, except that terms are interpreted simultaneously instead of constructively.
Specifically, the interpretation of compound term 𝑓 (𝑒) is not defined from the interpretation of its
sub-term 𝑒 ,6 but instead we have a Henkin-style definition for term interpretations:

Definition 46 ([Popescu and Roşu 2015, Section 2]). For a given set of many-sorted predicates
Π = {Π𝑠 }𝑠∈𝑆∗ , we define the set TGLForm of TGL formulas by the following grammar:

𝜑 F 𝑒1 = 𝑒2 | 𝜑1 ∧ 𝜑2 | ¬𝜑 | ∃𝑥 :𝑠 ′. 𝜑 | 𝜋 (𝑒1, . . . , 𝑒𝑛) for 𝜋 ∈ Π𝑠1 · · ·𝑠𝑛 and 𝑒𝑖 has sort 𝑠𝑖 for all 𝑖

Let 𝐴 = {𝐴𝑠 }𝑠∈𝑆 be an 𝑆-indexed carrier set. A TGL valuation 𝜌 : 𝑉 → 𝐴 is a function such that
𝜌 (𝑥 :𝑠) ∈ 𝐴𝑠 for every 𝑠 ∈ 𝑆 and 𝑥 :𝑠 ∈ 𝑉𝑠 . Let TGLVal be the set of all TGL valuations. A TGL model
({𝐴𝑠 }𝑠∈𝑆 , {𝐴𝑒 }𝑒∈TGLTerm, {𝐴𝜋 }𝜋 ∈Π) has a Henkin-style definition as follows:

(1) 𝐴𝑠 ≠ ∅ for every 𝑠 ∈ 𝑆 .
(2) 𝐴𝑒 : TGLVal → 𝐴𝑠 , where 𝑠 is the sort of 𝑒 , such that for any 𝑥 :𝑠, 𝑒, 𝑒 ′, 𝜌 :
(a) 𝐴𝑥 :𝑠 (𝜌) = 𝜌 (𝑥 :𝑠).
(b) 𝐴𝑒 [𝑒′/𝑥 :𝑠 ] (𝜌) = 𝐴𝑒 (𝑆𝑒′,𝑥 :𝑠 (𝜌)), where 𝑆𝑒′,𝑥 :𝑠 (𝜌) is the TGL valuation such that 𝑆𝑒′,𝑥 :𝑠 (𝜌) (𝑥 :𝑠) =

𝐴𝑒′ (𝜌) and 𝑆𝑒′,𝑥 :𝑠 (𝜌) (𝑦:𝑠
′) = 𝐴𝑦:𝑠′ (𝜌) for any 𝑦:𝑠

′
. 𝑥 :𝑠 .

(3) 𝐴𝜋 ⊆ 𝐴𝑠1 × · · · ×𝐴𝑠𝑛 for every 𝜋 ∈ Π𝑠1 ...𝑠𝑛 .

We let 𝐴𝜑 ⊆ TGLVal for 𝜑 ∈ TGLForm be the set of valuations under which 𝜑 holds, defined as:

(1) 𝜌 ∈ 𝐴𝑒1=𝑒2 iff 𝐴𝑒1 (𝜌) = 𝐴𝑒2 (𝜌);

6TGL in its full generality as in [Popescu and Roşu 2015] does not even have a notion of compound terms or sub-terms.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.



88:26 Xiaohong Chen and Grigore Roşu

(2) 𝜌 ∈ 𝐴𝜋 (𝑒1,...,𝑒1) iff (𝐴𝑒1 (𝜌), . . . , 𝐴𝑒𝑛 (𝜌)) ∈ 𝐴𝜋 ;

(3) 𝜌 ∈ 𝐴𝜑1∧𝜑2 iff 𝜌 ∈ 𝐴𝜑1 and 𝜌 ∈ 𝐴𝜑2 ;

(4) 𝜌 ∈ 𝐴¬𝜑 iff 𝜌 ∉ 𝐴𝜑 ;

(5) 𝜌 ∈ 𝐴∀𝑥 :𝑠. 𝜑 iff 𝜌 [𝑎/𝑥 :𝑠] ∈ 𝐴𝜑 for every 𝑎 ∈ 𝐴𝑠 .

TGL has a sound and complete Gentzen proof system [Popescu and Roşu 2015, Figs. 1-2], which
derives sequents of the form 𝐸 ⊢TGL Δ1 ⊲ Δ2 for 𝐸,Δ1,Δ2 ⊆ TGLForm, which intuitively means that
under TGL theory 𝐸, the conjunction of the formulas in Δ1 implies the disjunction of the formulas
in Δ2. It is required that 𝐸 contains formulas without free variables, and Δ1,Δ2 are finite sets
containing formulas with finitely many free variables; these requirements are needed for TGL’s
completeness theorem and all TGL sequents considered in this paper satisfy these requirements.

Definition 47 ([Popescu and Roşu 2015, Sections 2-3]). For a TGL model 𝐴 and 𝜑 ∈ TGLForm,
we write 𝐴 ⊨TGL 𝜑 iff 𝐴𝜑 = TGLVal. We write 𝐴 ⊨TGL 𝐸 iff 𝐴 ⊨TGL 𝜑 for all 𝜑 ∈ 𝐸. TGL
validity 𝐸 ⊨TGL Δ1 ⊲ Δ2 is defined as

⋂

𝜑 ∈Δ1
𝐴𝜑 ⊆

⋃

𝜑 ∈Δ2
𝐴𝜑 , for all 𝐴 ⊨TGL 𝐸. TGL provability

𝐸 ⊢TGL Δ1 ⊲ Δ2 is defined by the Gentzen proof system of TGL in the usual way.

Theorem 48 ([Popescu and Roşu 2015, Theorem 3.1]). Under the above requirements about
𝐸,Δ1,Δ2, we have 𝐸 ⊨TGL Δ1 ⊲ Δ2 if and only if 𝐸 ⊢TGL Δ1 ⊲ Δ2.

9.2 Defining Term Generic Logic in Matching Logic

In this section we define a matching logic theory Γ
TGL and introduce notations such that all TGL

terms and formulas are well-formed matching logic patterns. We show that ΓTGL is a conservative
extension of TGL, by proving the following equivalence theorem.

Theorem 49. Under the notations in Theorem 48, the following are equivalent: (1) (ΓTGL ∪ 𝐸) ⊢
∧

Δ1 →
∨

Δ2. (2) (Γ
TGL ∪ 𝐸) ⊨

∧

Δ1 →
∨

Δ2; (3) 𝐸 ⊨TGL Δ1 ⊲ Δ2; (4) 𝐸 ⊢TGL Δ1 ⊲ Δ2; Here,
∧

Δ1

is the conjunction of patterns in Δ1 and
∨

Δ2 is the disjunction of patterns in Δ2.

Thanks to the mathematical instruments and notations that we have introduced in Section 4,
the definition of ΓTGL is straightforward. The many-sorted binder syntax (Definition 44) and TGL
terms are captured by defining sorts and many-sorted functions as in Section 4.2, and defining
binders as in Eq. (12). TGL formulas, except 𝜋 (𝑒1, . . . , 𝑒𝑛), are captured by matching logic’s derived
connectives (Fig. 1) and equality (Definition 13). Predicate 𝜋 (𝑒1, . . . , 𝑒𝑛) for 𝜋 ∈ Π𝑠1 · · ·𝑠𝑛 , is captured
by defining a matching logic symbol 𝜋 and the following axiom:

(Predicate) ∀𝑥1:𝑠1 . . . .∀𝑥𝑛 :𝑠𝑛 . (𝜋 𝑥1 · · · 𝑥𝑛 = ⊤) ∨ (𝜋 𝑥1 · · · 𝑥𝑛 = ⊥) (13)

which specifies that 𝜋 returns either ⊤ or ⊥, i.e., it indeed builds predicate patterns. Without such
axioms, 𝜋 𝑥1 · · · 𝑥𝑛 could be any subset. Let ΓTGL contain all the above definitions and notations.

Remark 50. Under the above notations and axioms, all TGL terms are matching logic functional
patterns (Section 3.2.2) and all TGL formulas are matching logic predicate patterns (Section 3.2.1).

Theorem 49 is proved using a model-based approach similar to Fig. 4. Here we explain the only
nontrivial proof step, which is (2) =⇒ (3). This is proved by constructing a matching logic model
𝑀𝐴 from any given TGL model 𝐴, such that all TGL terms and formulas are interpreted the same in
𝑀𝐴 and 𝐴, i.e., |𝑒 |𝜌 = {𝐴𝑒 (𝜌)} for every 𝑒 ∈ TGLTerm; |𝜑 |𝜌 = 𝑀𝐴 whenever 𝜌 ∈ 𝐴𝜑 , and |𝜑 |𝜌 = ∅,
whenever 𝜌 ∉ 𝐴𝜑 , for every 𝜑 ∈ TGLForm.

Remark 51. Using TGL and Theorem 49, we obtain a systematic proof of the conservative extension
theorems and deductive completeness theorems for all logical systems that have been defined in
TGL and studied in [Popescu and Roşu 2015, Section 4] and [Popescu and Roşu 2013, Section 4],
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including System F [Girard 1972; Reynolds 1974] (both the typing and reduction versions), 𝜆-calculus
(including the untyped [Church 1941], sub-typed [Cardelli et al. 1994], illative [Barendregt 1984],
and linear versions [Girard 1987; Lincoln and Mitchell 1992]), pure type systems [Barendregt 1993],
and 𝜋-calculus [Milner et al. 1992]. The systematic proof works as follows. For each logical system
𝐿, its set of terms Term𝐿 can be captured by a binder syntax using the desugaring discussed at the
beginning of Section 9. The proof/type system of 𝐿 that derives sequents of the form ⊢𝐿 Φ is captured
by a set of TGL axioms 𝐸𝐿 , where each axiom corresponds to one type/proof rule of 𝐿 [Popescu and
Roşu 2015]. An adequacy theorem is also proved there for each 𝐿, stating that ⊢𝐿 Φ iff 𝐸𝐿 ⊢TGL Φ

TGL,
where Φ

TGL (of the form Δ
Φ

1 ⊲ Δ
Φ

2 ) is the corresponding TGL encoding of the 𝐿-sequent Φ. Let

Γ
𝐿
= Γ

TGL ∪ 𝐸𝐿 be the matching logic theory that captures 𝐿, and Φ
ML

=
∧

Δ
Φ

1 →
∨

Δ
Φ

2 be the

matching logic encoding of Φ. By Theorem 48, we have that ⊢𝐿 Φ in 𝐿, iff 𝐸𝐿 ⊢TGL Φ
TGL in TGL, iff

Γ
𝐿 ⊢ ΦML in matching logic, iff Γ

𝐿
⊨ Φ

ML in matching logic. Hence, Γ𝐿 is a conservative extension
of 𝐿 and the class of matching logic models of Γ𝐿 is complete with respect to 𝐿.

Remark 52. Note that the term łconsistencyž has different meanings in different contexts. In type
systems, inconsistency means the ability to prove any typing judgments 𝑡 :𝜏 . Similarly, in 𝜆-calculus
or other equational logic theories, inconsistency means the ability to prove any equations 𝑒1 = 𝑒2.
However, in matching logic (and also FOL), inconsistency means the ability to prove logical false ⊥.
Thus, inconsistency for classical logics such as matching logic is stricter than that for type systems
and 𝜆-calculus. For example, if 𝑇 is a PTS that contains the typing axiom Type:Type, then 𝑇 is
inconsistent [Martin-Löf 1998], but its matching logic theory Γ

𝑇 is still a consistent matching logic
theory and has a model that interprets the typing relation _:_ as the total relation on all PTS terms.

10 FUTURE WORK

Inductive Reasoning. An important direction for future work is to investigate inductive reasoning
on terms with binders. We use 𝜆-calculus as an example but the discussion applies to all binders.

The set of 𝜆-expressions Λ is an inductive structure. This means that Λ is the smallest set closed
under variables, application, and abstraction, and it admits the principle of inductive reasoning,
which can be intuitively expressed by the following formula (this should be understood informally;
in particular, the inductive hypothesis for 𝜆𝑥 . 𝑒 in (‡) takes various forms in the literature; e.g., [Pitts
2003, pp. 21] uses the N-quantifier on 𝑥 , meaning that there exists 𝑥 :Var such that 𝑥 is not free in 𝑒 ,
while [Aydemir et al. 2008, pp. 5] uses ∀-quantifier to quantify all 𝑥 :Var that are not free in 𝑒):7

∀𝑃 . (∀𝑥 :Var . 𝑥 ∈ 𝑃)

∧ (∀𝑒:Exp.∀𝑒 ′:Exp. 𝑒 ∈ 𝑃 ∧ 𝑒 ′ ∈ 𝑃 → (𝑒 𝑒 ′) ∈ 𝑃)

∧ (∀𝑒:Exp. 𝑒 ∈ 𝑃 → ∀𝑥 :Var . 𝜆𝑥 . 𝑒 ∈ 𝑃) (3)

→ ∀𝑒:Exp. 𝑒 ∈ 𝑃

where 𝑃 ⊆ Λ is a property of 𝜆-expressions. Inductive reasoning on terms with binders is known
to be hard when the binding behavior of 𝜆 yields bindings in the meta-language, making it difficult
to write pattern-matching style recursive definitions and reasoning (see, e.g., [Gabbay 2000]). For
example, if we try to parse the above inductive principle as a matching logic pattern, we will notice
that ∀𝑥 :Var in (3) binds nothingÐ𝑥 is already bound in 𝜆𝑥 . 𝑒 .

There is relevant research on this topic, e.g., [Chlipala 2008; Despeyroux et al. 1995; Schürmann
et al. 2001] for HOAS approaches and [Pitts 2013; Urban 2008] for nominal induction and recursion,
which we will investigate and reconcile within matching logic. We believe that matching logic
is particularly suitable for defining such inductive principles. Indeed, matching logic allows set
variables, which are effectively universally quantified in formulas. Therefore, the second-order

7[Aydemir et al. 2008] gives credits to [McKinna and Pollack 1993] and mentions that it can be used in many other logics.
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quantification ∀𝑃 in the inductive principle above can be effectively captured in matching logic by
simply dropping the ∀𝑃 quantifier and letting the set variable 𝑃 stay free in the formula.

Replacing Axiom Schemas with Axioms. The matching logic theory Γ
𝜆 for 𝜆-calculus (Section 6)

includes axiom schema (𝛽) with meta-variables 𝑥, 𝑒, 𝑒 ′, the same as the original 𝜆-calculus. Thus, Γ𝜆

is a faithful definition of 𝜆-calculus that captures it as is. This was intended and desired, because we
believe that as a unifying logic for semantic frameworks (like K), matching logic should allow us to
define logics, calculi and languages as a mirror of the original, without any encodings or translations
except for defining the necessary mathematical instruments and convenient notations. For practical
reasons, it is also useful to define 𝜆-calculus (and other binders) using axioms (not schemas) and
normal variables (not meta-variables), as in nominal logic axiom (𝛽 in Nominal Logic) and HOAS
(e.g., Twelf definition red-beta), both shown in Section 2. Thus, one way to eliminate schemas and
meta-variables is to follow nominal and/or HOAS approaches methodologically, as explained in
Remark 1; that is, we define nominal logic or HOAS in matching logic as theories and notations,
and then define binders through them. However, matching logic also gives us an opportunity for
alternative definitions. Below, we will show at a high level one example. Studying such alternative
encodings of calculi is interesting and practical, but will be addressed in other places.
Recall that 𝜆𝑥 . 𝑒 ≡ lambda (intension ∃𝑥 :Var . ⟨𝑥, 𝑒⟩), where (intension ∃𝑥 :Var . ⟨𝑥, 𝑒⟩) denotes

the graph of 𝑥 ↦→ 𝑒 as an element of sort 2Var⊗Exp. As pointed out in Section 6, not all elements of
sort 2Var⊗Exp represent a graph, so we may identify and axiomatize a subsort Graph of 2Var⊗Exp that
includes precisely all graphs. And thus, the schema (𝛽) can be replaced by the following axiom:

(𝛽 , Not a Schema) ∀𝑔:Graph.∀𝑒 ′:Exp. (lambda 𝑔) 𝑒 ′ = graph-lookup 𝑔 𝑒 ′

where 𝑔 and 𝑒 ′ are normal variables and graph-lookup is axiomatized as the graph lookup operation.

11 CONCLUSION

In this paper, we used (a functional variant of) matching logic to define binders in various logical
systems. The binding behavior of binders in the object-level systems is directly inherited from the
built-in binder ∃ in matching logic. We demonstrated our approach directly by defining 𝜆-calculus
as a matching logic theory, and indirectly by capturing term-generic logic (TGL); the latter yields
matching logic definitions for many logical systems that feature bindings that were previously
defined as TGL theories, including System F, pure type systems, 𝜋-calculus, etc. We proved the
conservative extension theorems for all of these. We illustrated two proof methods: one based
on models that is suitable for object-level systems that come equipped with models, and another
based on syntax and proof derivations that is more involved but available even when the system
lacks models. Our approach also yields models for the defined systems. For the systems discussed
in the paper, the obtained models are complete w.r.t. logical reasoning, which follows from the
conservative extension theorems. For 𝜆-calculus, the models are representationally complete for all
𝜆-theories, suggesting that matching logic is a promising alternative semantics for 𝜆-calculus.
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