
Matching µ-Logic
Xiaohong Chen

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801–2302
Email: xc3@illinois.edu

Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801–2302
Email: grosu@illinois.edu

Abstract—Matching logic is a logic for specifying and reasoning
about structure by means of patterns and pattern matching. This
paper makes two contributions. First, it proposes a sound and
complete proof system for matching logic in its full generality.
Previously, sound and complete deduction for matching logic
was known only for particular theories providing equality and
membership. Second, it proposes matching µ-logic, an extension
of matching logic with a least fixpoint µ-binder. It is shown that
matching µ-logic captures as special instances many important
logics in mathematics and computer science, including first-order
logic with least fixpoints, modal µ-logic as well as dynamic
logic and various temporal logics such as infinite/finite-trace
linear temporal logic and computation tree logic, and notably
reachability logic, the underlying logic of the K framework for
programming language semantics and formal analysis. Matching
µ-logic therefore serves as a unifying foundation for specifying
and reasoning about fixpoints and induction, programming
languages and program specification and verification.

I. Introduction
Matching logic [1] (shortened as ML) is a first-order logic

(FOL) variant for specifying and reasoning about structure by
means of patterns and pattern matching. In the practice of
program verification, ML is used to specify static properties
of programs in reachability logic [2] (shortened as RL), which
takes an operational semantics of a programming language as
axioms and yields a program verifier that can prove any reach-
ability properties of any programs written in that language. As
a successful implementation of ML and RL, the K framework
(http://kframework.org) has been used to define the formal
semantics of various real languages such as C [3], Java [4],
JavaScript [5], and to verify complex program properties [6].

A sound and complete Hilbert-style proof system P of
ML is given in [1], whose proof of completeness is by a
reduction to pure predicate logic. However, the proof system P
is only applicable to theories where a set of special definedness
symbols are given together with appropriate axioms, which can
be used to define both equality and membership as derived
constructs. This leaves the question of whether there is any
proof system of ML that is applicable to all theories, open.
Our first contribution is to answer this question by proposing
a new proof system H of ML, and show that it is (locally)
complete without requiring definedness or any other symbols.
Our second and main contribution was stimulated by limita-

tions of RL itself as a logic to reason about dynamic behavior
of programs. Specifically, as its name suggests, RL can only

define and reason about reachability claims. In particular, it
is not capable of expressing liveness or many other interest-
ing properties that temporal or dynamic logics can naturally
express. Therefore, we propose matching µ-logic (shortened
as MmL), which extends ML with a least fixpoint µ-binder.
It turns out that MmL subsumes not only RL, but also a
variety of common logics/calculi that are used to reason about
fixpoints and induction, especially for program verification and
model checking, including first-order logic with least fixpoints
(LFP) [7], modal µ-logic [8] (as well as various temporal
logics [9], [10] and dynamic logic (DL) [11]–[13]). For each of
these logics/calculi, we prove a conservative extension result,
showing that our definitions are faithful.
We organize the rest of the paper as follows. We start with

a quick but comprehensive overview of ML in Section II,
and then present the new proof system H in Section III. We
present MmL in Section IV, and show how to define recursive
symbols as syntactic sugar in Section V. Then we discuss how
MmL subsumes all the following: first-order logic with least
fixpoints (Section VI); modal µ-logic and its fragment logics
(Section VII); reachability logic (Section VIII). We compare
with related work and conclude the paper with a proposal of
future work in Sections IX and X, respectively.

Due to space limitations, all proofs can be found in [14].

II. Matching Logic Preliminaries
Matching logic (ML) [1] is a variant of many-sorted FOL

that makes no distinction between function and predicate
symbols, allowing them to uniformly build patterns. Patterns
define both structural and logical constraints, and are inter-
preted in models as sets of elements (those that match them).

A. Matching logic syntax
Definition 1. A matching logic signature or simply a signature
� = (S,Var,Σ) is a triple with a nonempty set S of sorts, an
S-indexed set Var = {Vars}s∈S of countably infinitely many
sorted variables denoted x:s, y:s, etc., and an (S∗ × S)-indexed
set Σ = {Σs1...sn ,s}s1 ,...,sn ,s∈S of countably many many-sorted
symbols. When n = 0, we write σ ∈ Σλ,s and say σ is a
constant. Matching logic �-patterns or simply (�-)patterns are
defined inductively for all sorts s, s′, s1, . . . , sn ∈ S as follows:

ϕs F x:s ∈ Vars | ϕs ∧ ϕs | ¬ϕs | ∃x:s′.ϕs
| σ(ϕs1, . . . , ϕsn) if σ ∈ Σs1...sn ,s978-1-7281-3608-0/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

We use PatternML(�) = {PatternML
s (�)}s∈S to denote the

S-indexed set of �-patterns generated by the above grammar
(modulo α-equivalence, see later). We feel free to drop the
signature � and simply write PatternML = {PatternML

s }s∈S .

Intuitively speaking, patterns evaluate to the sets of elements
that match them. A variable x:s is a pattern that is matched by
exactly one element; ϕ1∧ϕ2 is matched by elements matching
both ϕ1 and ϕ2; ¬ϕ is matched by elements not matching ϕ;
∃x:s′.ϕ is a pattern that allows us to abstract away irrelevant
parts (i.e., x:s′) of the structures, which can match patterns
σ(ϕs1, . . . , ϕsn). This intuition is formalized in Definition 4.
We often abbreviate � = (S,Var,Σ) as (S,Σ) or just Σ.

When we write a pattern, we assume it is well-formed without
explicitly specifying the necessary conditions. When σ ∈ Σλ,s
is a constant, we write σ to mean the pattern σ(). We adopt
the following derived constructs as syntactic sugar:
ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) ∀x:s.ϕ ≡ ¬∃x:s.¬ϕ
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2 >s ≡ ∃x:s.x:s
ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) ⊥s ≡ ¬>s

Intuitively, ϕ1 ∨ ϕ2 is matched by elements matching ϕ1 or
ϕ2; >s is matched by all elements (in the sort universe s);
and ⊥s is matched by no elements. The formal semantics of
these derived constructs is given in Proposition 5. Standard
precedences are adopted to avoid parentheses. The scope of
“∀” and “∃” goes as far as possible to the right. We drop sort
s whenever possible, so we write x,>,⊥ instead of x:s,>s,⊥s .
Like in FOL, “∀” and “∃” are binders, and we adopt the

standard notions of free variables, α-renaming, and capture-
avoiding substitution. We let FV(ϕ) denote the set of free
variables in ϕ. When FV(ϕ) = ∅, we say ϕ is closed. We regard
α-equivalent patterns ϕ and ϕ′ as the same, and write ϕ ≡ ϕ′.
We let ϕ[ψ/x] be the result of substituting ψ for every free
occurrence of x in ϕ, where α-renaming happens implicitly
to prevent variable capture. We let ϕ[ψ1/x1, . . . ,ψn/xn] be the
result of simultaneously substituting ψ1, . . . ,ψn for x1, . . . , xn.
B. Matching logic semantics

ML symbols are interpreted as relations, and thus ML
patterns evaluate to sets of elements (those “matching” them).
Definition 2. Given � = (S,Σ), a matching logic �-model
M = ({Ms}s∈S, {σM }σ∈Σ), or simply a (�)-model, contains
• a nonempty carrier set Ms for each sort s ∈ S;
• an interpretation σM : Ms1 × · · · ×Msn → P(Ms) for each
σ ∈ Σs1...sn ,s , where P(Ms) is the powerset of Ms .

We overload the letter M to also mean the S-indexed set
{Ms}s∈S . The usual FOL models are special cases of ML
models, where |σM (a1, . . . ,an)| = 1 for all a1 ∈ Ms1, . . . ,an ∈
Msn . Partial FOL models [15] are also special cases with
|σM (a1, . . . ,an)| ≤ 1, as we can capture the undefinedness of
the partial function σM on a1, . . . ,an by σM (a1, . . . ,an) = ∅.

We tacitly use the same letter σM to mean its pointwise
extension, σM : P(Ms1) × · · · × P(Msn) → P(Ms), defined as:
σM (A1, . . . , An) =

⋃
{σM (a1, . . . ,an) | a1 ∈ A1, . . . ,an ∈ An}

for all A1 ⊆ Ms1, . . . , An ⊆ Msn .

Proposition 3. For all Ai, A′i ⊆ Msi , 1 ≤ i ≤ n, the pointwise
extension σM has the following property of propagation:
σM (A1, . . . , An) = ∅ if Ai = ∅ for some 1 ≤ i ≤ n,

σM (A1 ∪ A′1, . . . , An ∪ A′n) =
⋃

1≤i≤n,Bi ∈{Ai ,A
′
i }
σM (B1, . . . ,Bn),

σ(A1, . . . , An) ⊆ σ(A′1, . . . , A
′
n) if Ai ⊆ A′i for all 1 ≤ i ≤ n.

Definition 4. Let � = (S,Var,Σ) and let M be a �-model.
Given a function ρ : Var→ M , called an M-valuation, let its
extension ρ̄ : PatternML → P(M) be inductively defined as:
• ρ̄(x) = {ρ(x)}, for all x ∈ Vars;
• ρ̄(ϕ1 ∧ ϕ2) = ρ̄(ϕ1) ∩ ρ̄(ϕ2), for ϕ1, ϕ2 ∈ Patterns;
• ρ̄(¬ϕ) = Ms \ ρ̄(ϕ), for all ϕ ∈ Patterns;
• ρ̄(∃x.ϕ) =

⋃
a∈Ms′

ρ[a/x](ϕ), for all x ∈ Vars′ ;
• ρ̄(σ(ϕ1, ..., ϕn)) = σM (ρ̄(ϕ1), ..., ρ̄(ϕn)), for σ ∈ Σs1...sn ,s;

where “\” is set difference and ρ[a/x] denotes the M-valuation
ρ′ with ρ′(x) = a and ρ′(y) = ρ(y) for all y . x.

Proposition 5. The following propositions hold:
• ρ̄(>s) = Ms and ρ̄(⊥s) = ∅;
• ρ̄(ϕ1 ∨ ϕ2) = ρ̄(ϕ1) ∪ ρ̄(ϕ2);
• ρ̄(ϕ1→ ϕ2) = Ms \(ρ̄(ϕ1)\ ρ̄(ϕ2)), for ϕ1, ϕ2 ∈ Patterns;
• ρ̄(ϕ1↔ ϕ2) = Ms\(ρ̄(ϕ1)4 ρ̄(ϕ2)), for ϕ1, ϕ2 ∈ Patterns;
• ρ̄(∀x.ϕ) =

⋂
a∈Ms′

ρ[a/x](ϕ), for all x ∈ Vars′;
where “4” is set symmetric difference.

Definition 6. We say pattern ϕ is valid in M , written M �ML ϕ,
iff ρ̄(ϕ) = M for all ρ : Var→ M . Let Γ be a set of patterns
called axioms. We write M �ML Γ iff M �ML ψ for all ψ ∈ Γ.
We write Γ �ML ϕ and say that ϕ is valid in Γ iff M �ML ϕ
for all M �ML Γ. We abbreviate ∅ �ML ϕ as �ML ϕ. We call the
pair (�,Γ) a matching logic �-theory, or simply a (�-)theory.
We say that M is a model of the theory (�,Γ) iff M �ML Γ.
C. Important notations
Several mathematical instruments of practical importance,

such as definedness, totality, equality, membership, set con-
tainment, functions and partial functions, and constructors, can
all be defined using patterns. We give a compact summary of
the definitions and notations that are needed in this paper.

Definition 7. For any (not necessarily distinct) sorts s, s′, let us
consider a unary symbol d_es′s ∈ Σs,s′ , called the definedness
symbol, and the pattern/axiom dx:ses′s , called (Definedness).
We define totality “b_cs′s ”, equality “=s′s ”, membership “∈s′s ”,
and set containment “⊆s′s ” as derived constructs:

bϕcs
′

s ≡ ¬d¬ϕe
s′

s ϕ1 =
s′

s ϕ2 ≡ bϕ1 ↔ ϕ2c
s′

s

x ∈s
′

s ϕ ≡ dx ∧ ϕes
′

s ϕ1 ⊆
s′

s ϕ2 ≡ bϕ1 → ϕ2c
s′

s

and feel free to drop the (not necessarily distinct) sorts s, s′.

For all M satisfying (Definedness), (d_es′s)M (a) = Ms′ for
all a ∈ Ms [1, Proposition 5.2]. Thus, for all ρ, we have
ρ̄(dϕes

′

s) = Ms′ if ρ̄(ϕ) , ∅, and ρ̄(dϕes
′

s) = ∅ otherwise; i.e.,
dϕes

′

s says, in sort universe s′, if ϕ is defined in universe s. Def-
inition 7 constructs have expected semantics: ρ̄(bϕcs′s) = Ms′

if ρ̄(ϕ) = Ms , and ρ̄(bϕcs
′

s) = ∅ otherwise; ρ̄(ϕ1 =
s′
s ϕ2) = Ms′

if ρ̄(ϕ1) = ρ̄(ϕ2), and ρ̄(ϕ1 =
s′
s ϕ2) = ∅ otherwise; etc.

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

Functions and partial functions can be defined by axioms:
(Function) ∃y . σ(x1, . . . , xn) = y

(Partial Function) ∃y . σ(x1, . . . , xn) ⊆ y

(Function) requires σ(x1, . . . , xn) to contain exactly one ele-
ment and (Partial Function) requires it to contain at most
one element (recall that y evaluates to a singleton set). For
brevity, we use the function notation σ : s1 × · · · × sn → s to
mean we automatically assume the (Function) axiom of σ.
Similarly, partial functions are written as σ : s1× · · · × sn ⇀ s.

Constructors are extensively used in building programs and
data, as well as semantic structures to define and reason about
languages and programs. They can be characterized in the “no
junk, no confusion” spirit [16]. Let � = (S,Σ) be a signature
and C = {ci ∈ Σs1

i ...s
mi
i ,si

| 1 ≤ i ≤ n} ⊆ Σ be a set of symbols
called constructors. Consider the following axioms/patterns:

(No Junk) for all sorts s ∈ S:∨
ci ∈C with si=s

∃x1
i :s1

i . . . ∃xmi

i :smi

i . ci(x1
i , . . . , x

mi

i)

(No Confusion I) for all i , j and si = sj :
¬(ci(x1

i , . . . , x
mi

i) ∧ cj(x1
j , . . . , x

m j

j))

(No Confusion II) for all 1 ≤ i ≤ n:
(ci(x1

i , ..., x
mi

i) ∧ ci(y1
i , ..., y

mi

i)) → ci(x1
i ∧ y1

i , ..., x
mi

i ∧ ymi

i)

Intuitively, (No Junk) says everything is constructed; (No
Confusion I) says different constructs build different things;
and (No Confusion II) says constructors are injective. We
refer to the the last two axioms as (No Confusion).

D. Defining first-order logic in matching logic
Given a FOL signature (S,Σ,Π) with function symbols Σ

and predicate symbols Π, the syntax of FOL is given by:
ts F x ∈ Vars | f (ts1, . . . , tsn) with f ∈ Σs1...sn ,s

ϕ F π(ts1, . . . , tsn) with π ∈ Πs1...sn | ϕ→ ϕ | ¬ϕ | ∀x.ϕ
To subsume the syntax, we define a ML signature �FOL =

(SFOL,ΣFOL), where SFOL = S∪{Pred} contains a distinguished
sort Pred for FOL formulas and ΣFOL = { f : s1×· · ·× sn → s |
f ∈ Σs1...sn ,s} ∪ {π ∈ Σ

FOL
s1...sn ,Pred | π ∈ Πs1...sn } contains FOL

function symbols as ML functions and FOL predicate symbols
as ML symbols that return Pred. Let ΓFOL be the resulting
�FOL-theory. Notice that we use the function notations so ΓFOL

contains the (Function) axioms for all f ∈ ΣFOL.

Proposition 8. All FOL formulas ϕ are �FOL-patterns of sort
Pred, and we have �FOL ϕ iff ΓFOL �ML ϕ (see [1]).

E. Matching logic proof system P with definedness symbols
ML has a conditional sound and complete Hilbert-style

proof system [1, Fig. 5], here referred to as P. We let Γ `P ϕ
denote its provability relation. P can prove all patterns ϕ that
are valid in Γ under the condition that Γ contains definedness
symbols and (Definedness) axioms. In fact, P proof rules use
equality “=” and membership “∈”, both requiring definedness
symbols. This means that P is not applicable at all to any
theories that do not contain definedness symbols.

We wrap up this section by reviewing the soundness and
completeness theorem of P. In Section III, we propose a
new ML proof system H that is sound and (locally) complete
without requiring the theories to contain definedness symbols.

Theorem 9 (Soundness and completeness of P, see [1]). For
all theories Γ containing the definedness symbols and axioms
(Definition 7) and all patterns ϕ, we have Γ �ML ϕ iff Γ `P ϕ.

III. A New Proof System of Matching Logic
Our first main contribution is a new ML proof systemH that

is sound and (locally) complete without requiring definedness
symbols and axioms, and thus extends the completeness result
in [1], re-stated in Theorem 9. We first need the following:

Definition 10. A context C is a pattern with a distinguished
placeholder variable �. We write C[ϕ] to mean the result of
replacing � with ϕ without any α-renaming, so free variables
in ϕ may become bound in C[ϕ], different from capture-
avoiding substitution. A single symbol context has the form
Cσ ≡ σ(ϕ1, . . . , ϕi−1,�, ϕi+1, . . . , ϕn) where σ ∈ Σs1...sn ,s and
ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn are patterns of appropriate sorts. A
nested symbol context is inductively defined as follows:
• � is a nested symbol context, called the identity context;
• if Cσ is a single symbol context, and C is a nested symbol
context, then Cσ[C[�]] is a nested symbol context.

Intuitively, a context C is a nested symbol context iff the path
to � in C contains only symbols and no logic connectives.

The proof system H (Fig. 1, above the double line) has four
categories of proof rules. The first consists of all propositional
tautologies as axioms and (Modus Ponens). The second com-
pletes the (complete) axiomatization of pure predicate logic
(two rules); see, e.g., [17]. The third category contains four
rules that capture the property of propagation (Proposition 3).
The fourth category contains two technical proof rules that are
needed for the completeness result of H . Note that unlike P,
all proof rules of H are general rules and do not depend on
any special symbols such as the definedness symbols.

Definition 11. For an axiom set Γ and a pattern ϕ, we write
Γ `H ϕ iff ϕ can be proved by H with the patterns in Γ as
additional axioms. We abbreviate ∅ `H ϕ as `H ϕ.

There are two interesting observations about H . First,
(Framing) allows us to lift local reasoning through symbol
contexts, and thus supports compositional reasoning in ML.
Second, the propagation axioms plus (Framing) inspire a close
relationship between ML and modal logics, where the ML
symbols and the modal logic modalities are dual:

Proposition 12. Let σ ∈ Σs1...sn ,s and define its “dual” as
σ̄(ϕ1, . . . , ϕn) ≡ ¬σ(¬ϕ1, . . . ,¬ϕn). Then we have:
• (K): `H σ̄(ϕ1 → ϕ′1, . . . , ϕn → ϕ′n)

→ (σ̄(ϕ1, . . . , ϕn) → σ̄(ϕ′1, . . . , ϕ
′
n));

• (N): `H ϕi implies `H σ̄(ϕ1, . . . , ϕi, . . . , ϕn).
These rules also appear in [18], [19] as proof rules of
polyadic modal logic. When n = 1, we obtain the standard
(K) rule and (N) rule of normal modal logic [20].

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

Hµ

H

(Propositional Tautology) ϕ if ϕ is a propositional tautology over patterns of the same sort

(Modus Ponens)
ϕ1 ϕ1 → ϕ2

ϕ2
(∃-Quantifier) ϕ[y/x] → ∃x.ϕ

(∃-Generalization)
ϕ1 → ϕ2 if x < FV(ϕ2)

(∃x.ϕ1) → ϕ2
(Propagation⊥) Cσ[⊥] → ⊥
(Propagation∨) Cσ[ϕ1 ∨ ϕ2] → Cσ[ϕ1] ∨ Cσ[ϕ2]
(Propagation∃) Cσ[∃x.ϕ] → ∃x.Cσ[ϕ] if x < FV(Cσ[∃x.ϕ])

(Framing)
ϕ1 → ϕ2

Cσ[ϕ1] → Cσ[ϕ2]

(Existence) ∃x. x
(Singleton Variable) ¬(C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

where C1 and C2 are nested symbol contexts.

(Set Variable Substitution)
ϕ

ϕ[ψ/X]
(Pre-Fixpoint) ϕ[µX . ϕ/X] → µX .ϕ

(Knaster-Tarski)
ϕ[ψ/X] → ψ

µX . ϕ→ ψ

Fig. 1. Sound and complete proof system H of matching logic (above the double line) and the proof system Hµ of matching µ-logic

We present three important properties about H , all proved
in [14]. The first property is the soundness theorem of H .

Theorem 13 (Soundness of H). Γ `H ϕ implies Γ �ML ϕ.

The second property is a version of deduction theorem of
H which requires definedness symbols and axioms.

Theorem 14 (Deduction theorem). For all axiom sets Γ con-
taining (Definedness) axioms (see Definition 7) and patterns
ψ, ϕ with ψ closed, we have Γ∪{ψ} `H ϕ iff Γ∪ `H bψc → ϕ.

The proof is standard, by induction on the proof length
of Γ ∪ {ψ} `H ϕ. Here, we give it an intuitive semantic
explanation. Suppose Γ ∪ {ψ} �ML ϕ. Then for all models
M �ML Γ, if ψ holds then ϕ also holds (we ignore valuations
as ψ is closed). This means M �ML bψc → ϕ, as bψc evaluates
to ∅ iff ψ does not hold in M . Note that M �ML ψ → ϕ is too
strong as a conclusion, for it requires the evaluation of ψ is
always contained in ϕ, even in models where ψ does not hold.
The third property is that we can prove all proof rules of
P using H with (Definedness) as axioms. This immediately
gives us the following (global) completeness result of H :

Theorem 15. For all axiom sets Γ containing (Definedness)
axioms and all patterns ϕ, we have Γ �ML ϕ implies Γ `H ϕ.

Finally, we state our main completeness result for H :

Theorem 16 (Local completeness of H). �ML ϕ implies `H ϕ.

Here, “local” means the theory is empty (i.e., no additional
axioms); in comparison, Theorem 15 holds for non-empty
theories. The proof of Theorem 16 is rather complex (see [14]).
We drew inspiration from [21], where a similar result is proved
for hybrid modal logic, using a mixture of modal and first-
order techniques: the ideas of canonical models from modal
logic and witnessed sets from first-order logic. Theorem 16 can

be seen as a nontrivial generalization. Specifically, we extend
hybrid modal logic with ∀-binder [21] in two directions. First,
we consider multiple sorts, each coming with its own universe
of worlds and logical infrastructure; the approach in [21] has
only one sort, that of “formulas”. Second, we allow arbitrarily
many modalities of arbitrary arities (see Proposition 12); the
approach in [21] only considers the usual, unary “necessity”
modality “�” (and its dual “^”). Polyadic, non-hybrid (i.e.,
without ∀-binder) variants of modal logic are known (see,
e.g., [18]), but at our knowledge our work in this paper is
the first to combine polyadic modalities and FOL quantifiers.
The full global completeness of H is left as future work.

See Section IX-B for more discussion.

IV. From Matching Logic to Matching µ-Logic
We extend ML with the least fixpoint µ-binder. We call the

extended logic matching µ-logic (MmL), and study its syntax,
semantics, and proof system. Many definitions, notations, and
properties of ML that are introduced in Section II and III also
work for MmL, so we only focus on parts where they differ.

A. Matching µ-logic syntax
Definition 17. A matching µ-logic signature � = (S,Var,Σ)
or simply a signature is the same as a matching logic signature
except that Var = EVar ∪ SVar is now a disjoint union of
two S-indexed sets of variables: the element variables denoted
as x:s, y:s, etc. in EVar, and the set variables denoted as
X:s,Y :s, etc in SVar. Matching µ-logic �-patterns, or simply
(�)-patterns, are defined inductively for all sorts s, s′ ∈ S as:

ϕs F x:s ∈ EVars | X:s ∈ SVars | · · ·

| µX:s.ϕs if ϕs is positive in X:s,

where the “. . . ” part is the same as in ML. Note that we only
quantify over element variables, not set variables. We say ϕs is

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

positive in X:s if every free occurrence of X:s is under an even
number of negations. We let Pattern(�) = {Patterns}s∈S
denote the set of all matching µ-logic �-patterns and feel free
to drop the signature �.

From now on, we tacitly assume we are talking about MmL
unless we explicitly say otherwise. Intuitively, element vari-
ables are like ML variables in that they evaluate to elements,
while set variables evaluate to sets. The least fixpoint pattern
µX:s. ϕs gives the least solution (under set containment) of the
equation X:s = ϕs of set variable X:s (this should be taken
as merely intuition at this stage, because we may not have
equality in the theories). The condition of positive occurrence
guarantees the existence of such a least solution. The notion of
free variables, α-renaming, and capture-avoiding substitution
are extended to set variables and the µ-binder. The dual version
of the least fixpoint µ-binder is the greatest fixpoint ν-binder,
defined as νX:s.ϕs ≡ ¬µX:s.¬ϕs[¬X:s/X:s], given that ϕs
is positive in X:s, (which implies that ¬ϕs[¬X:s/X:s] is also
positive in X:s, justifying the definition).

B. Matching µ-logic semantics

We first review a variant of the Knaster-Tarski theorem [22]:

Theorem 18 (Knaster-Tarski). Let M be a nonempty set and
F : P(M) → P(M) be a monotone function, i.e., F (A) ⊆
F (B) for all subsets A ⊆ B of M . Then F has a unique least
fixpoint µF and a unique greatest fixpoint νF , given as:

µF =
⋂
{A ∈ P(M) | F (A) ⊆ A},

νF =
⋃
{A ∈ P(M) | A ⊆ F (A)}.

We call A a pre-fixpoint of F whenever F (A) ⊆ A, and a
post-fixpoint of F whenever A ⊆ F (A).

MmL models are exactly ML models where sorts are asso-
ciated with their carrier sets and symbols are interpreted as
relations. Valuations are extended such that element variables
are mapped to elements and set variables are mapped to
subsets. Patterns are evaluated in the same way for the ML
constructs, but extended with the evaluation of least fixpoint
patterns µX:s. ϕ as the true least fixpoints in models. Formally:

Definition 19. Let � = (S,Var,Σ) be a signature with Var =
EVar ∪ SVar, and M = ({Ms}s∈S, {σM }σ∈Σ) be a �-model.
A valuation ρ : Var → (M ∪ P(M)) is a function such that
ρ(x) ∈ Ms for all x ∈ EVars and ρ(X) ∈ P(Ms) for all
X ∈ SVars . Its extension ρ̄ : Pattern → P(M) is defined as
in Definition 4, extended with:
• ρ̄(x) = {ρ(x)} for all x ∈ EVars;
• ρ̄(X) = ρ(X) for all X ∈ SVars;
• ρ̄(µX . ϕ) = µF

ρ
ϕ,X for all X ∈ SVars , where F ρϕ,X (A) =

ρ[A/X](ϕ) for all A ⊆ Ms .
Here ρ[A/X] is the ρ′ with ρ′(X) = A and ρ′(Y) = ρ(Y) for
all Y . X . Note F ρϕ,X is monotone, since ϕ is positive in X .
The notions M � ϕ, M � Γ, and Γ � ϕ are defined as expected.

Proposition 20. For all axiom sets Γ of matching logic
patterns (without µ) and all matching logic patterns ϕ (without
µ), we have Γ �ML ϕ if and only if Γ � ϕ.

C. Example: capturing precisely term algebras
Many approaches to specifying formal semantics of pro-

gramming languages are applications of initial algebra se-
mantics [23]. In this subsection, we show how term algebras,
a special case of initial algebras, can be precisely captured
using MmL patterns as axioms. For simplicity, we discuss only
monosorted term algebras, but the result can be extended to the
many-sorted settings without any major technical difficulties
using the techniques introduced in Section V.

Definition 21. Let � = ({Term},Σ) be a signature with one
sort Term and at least one constant. �-terms are defined as:

t F c ∈ Σλ,Term | c(t1, . . . , tn) for c ∈ ΣTerm...Term,Term

The �-term algebra T� = ({T�
Term}, {cT� }c∈Σ) consists of:

• a carrier set T�
Term of all �-terms;

• a function cT� : T�
Term × · · · × T�

Term → T�
Term for all c ∈

ΣTerm...Term,Term defined as cT� (t1, . . . , tn) = c(t1, . . . , tn).

Proposition 22. Let � = ({Term},Σ) be a signature with
one sort Term and at least one constant. Define a �-theory
Γterm� with (Function) and (No Confusion) axioms (see
Section II-C) for all symbols in Σ, plus the following axiom:

(Inductive Domain) µD.
∨
c∈Σ

c(D, . . . ,D)

Then for all �-models M � Γterm� , M is isomorphic to T�. In
addition, for all extended signatures �+ ⊇ � and �+-models
M � Γterm� , we have M

��
� is isomorphic to T�, where M

��
� is

the reduct model of M over the sub-signature �.

(Inductive Domain) forces that for all models M , the
carrier set MTerm must be the the smallest set that is closed
under all symbols in Σ, while (Function) and (No Confusion)
force all symbols in Σ to be interpreted as injective functions,
and different symbols construct different terms.
Proposition 22 immediately tells us that MmL cannot have a

proof system that is both sound and complete for all theories,
because one can capture precisely the model (N,+,×) of
natural numbers with addition and multiplication with a finite
number of MmL axioms, and the model (N,+,×), by Gödel’s
first incompleteness theorem [24], is not axiomatizable.

Proposition 23. Let � = ({Nat}, {0 ∈ Σλ,Nat, succ ∈ ΣNat,Nat})
and the �-theory Γterm� be defined as in Proposition 22, where
the (Inductive Domain) takes the following form:

(Inductive Domain) µD . 0 ∨ succ(D)
Let the signature �N extend � with two functions:

plus : Nat × Nat→ Nat mult : Nat × Nat→ Nat
and the �N-theory ΓN extend Γterm� with the standard axioms:

plus(0, y) = y plus(succ(x), y) = succ(plus(x, y))
mult(0, y) = 0 mult(succ(x), y) = plus(y,mult(x, y))

Then, ΓN captures precisely (N,+,×), meaning that for all
models M � ΓN, M is isomorphic to (N,+,×).

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

We finish this subsection by comparing Proposition 22 with
the nontrivial result that the term algebra T� has a complete
axiomatization in FOL where the only predicate symbol is
equality [25]. We refer to this complete FOL axiomatiza-
tion as ΓFOL(T�). This means that for all FOL formulas ϕ,
ΓFOL(T�) �FOL ϕ iff T� �FOL ϕ. This result is weaker than
Proposition 22, because by Löwenheim-Skolem theorem [26],
the FOL theory ΓFOL(T�) has models of arbitrarily large car-
dinalities (if � contains non-constant constructors), meaning
that there are models M �FOL ΓFOL(T�) with strictly more
elements than T�, and thus cannot be isomorphic to T�. It is
just the case that the FOL models of ΓFOL(T�) satisfy exactly
the same FOL formulas as T�. Proposition 22, on the other
hand, shows that the MmL theory Γterm� captures T� up to
isomorphism. Many automatic reasoning approaches [27], [28]
for algebraic datatypes and co-datatypes exploit this complete
axiomatization ΓFOL(T�). These approaches can be generalized
to MmL settings and provide (semi-)decision procedures for
the corresponding MmL theories. We leave this as future work.

D. Matching µ-logic proof system
Proposition 23 implies that MmL cannot have a sound and

complete proof system. The best we can do then is to aim for a
proof system that is good enough in practice. We take the ML
proof system H and extend it with three additional proof rules
(see Fig. 1). Rules (Pre-Fixpoint) and (Knaster-Tarski)
are standard proof rules about least fixpoints as in modal
µ-logic [8]; sometimes (Knaster-Tarski) is referred to as
Park induction [29]–[31]. Rule (Set Variable Substitution)
allows us to prove from ` ϕ any substitution ` ϕ[ψ/X] for
X ∈ SVar. That X is a set variable is crucial. In general,
we cannot prove from ` ϕ that ` ϕ[ψ/x] for x ∈ EVar,
because it does not hold semantically. As shown in [1], it
only holds when ψ is functional, that is, when ψ evaluates to
a singleton set. Indeed, suppose that ψ is not functional, say it
is the pattern 0∨succ(0) over the signature of natural numbers
in Proposition 23, which evaluates to a set of two elements.
Then we can pick ϕ to be the tautology ∃y . x = y, and then
ϕ[ψ/x] becomes ∃y . ψ = y, which states that ψ evaluates to
a singleton set (the valuation of y), which is a contradiction.
We let Hµ denote the extended proof system in Fig. 1, and

from here on we write Γ ` ϕ instead of Γ `Hµ
ϕ.

Theorem 24 (Soundness of Hµ). Γ ` ϕ implies Γ � ϕ.
E. Instance: Peano arithmetic

We illustrate the power of (Pre-Fixpoint) and (Knaster-
Tarski) by showing that they derive the (Induction) schema
in the FOL axiomatization of Peano arithmetic [32], [33]:

(Induction) ϕ(0) ∧ ∀x.(ϕ(x) → ϕ(succ(x))) → ∀x.ϕ(x)
where ϕ(x) is a FOL formula with a distinguished variable x.
We encode the FOL syntax of Peano arithmetic following

the technique in Section II-D, that is, we define a signature
�Peano = ({Nat,Pred},ΣN) where ΣN is defined in Proposi-
tion 23 that contains the functions 0, succ,plus,mult, and let
ΓPeano contain the same equation axioms as ΓN. The �Peano-
patterns of sort Pred are those built from equalities between

two patterns of sort Nat, as well as connectives and quantifiers.
Proposition 25. Under the above notations, we have:

Γ
Peano ` ϕ(0) ∧ ∀x.(ϕ(x) → ϕ(succ(x))) → ∀x.ϕ(x).

V. Defining Recursive Symbols as Syntactic Sugar
Intuitively, the least fixpoint pattern µX .ϕ specifies a re-

cursive set that satisfies the equation X = ϕ, where ϕ may
contain recursive occurrences of X . For example, the pattern
µX . 3 ∨ plus(X,X) specifies the set of all nonzero multiples
of 3, which intuitively defines a recursive constant:

m3 ∈ Σλ,Nat m3 =lfp 3 ∨ plus(m3,m3).

Here, “=lfp” is merely a notation, meaning that we want m3 to
be the least set that satisfies the equation. Note that the total
set of all natural numbers is a trivial solution.

The challenge is how to generalize the above and define
recursive non-constant symbols. For example, suppose we want
to define a unary symbol collatz ∈ ΣNat,Nat as follows:

collatz(n) =lfp

n ∨ (even(n) ∧ collatz(n/2)) ∨ (odd(n) ∧ collatz(3n + 1))

with the intuition that collatz(n) gives the set of all numbers in
the Collatz sequence1 starting from n. However, the µ-binder
in MmL can only be applied on set variables, not on symbols,
so the following attempt is syntactically wrong:
collatz(n) = µσ(n) . // µ can only bind a set variable

n ∨ (even(n) ∧ σ(n/2)) ∨ (odd(n) ∧ σ(3n + 1))

One possible solution could be to extend MmL with the
above syntax and allow the µ-binder to quantify symbol
variables, not only set variables. The semantics and proof
system could be extended accordingly. This is exactly how
first-order logic with least fixpoints extends FOL [7]. But do
we really have to? After all, our proof rules (Pre-Fixpoint)
and (Knaster-Tarski) in Fig. 1 are nothing but a logical
incarnation of the Knaster-Tarski theorem, which has been
repeatedly demonstrated to serve as a solid if not the main
foundation for recursion. Therefore, we conjecture that the
H proof system in Fig. 1 is sufficient in practice, and thus
would rather resist extending MmL. That is, we conjecture
that it should be possible to define one’s desired approach to
recursion/induction/fixpoints using ordinary MmL theories; as
an analogy, in Section II-C we showed how we can define
definedness, totality, equality, membership, set containment,
functions, partial functions, constructors, etc. (see [1] for
more) as theories, without a need to extend ML.
In particular, we can solve the above recursive symbol

challenge by using the principle of currying-uncurrying to
“mimic” the unary symbol collatz ∈ ΣNat,Nat with a set variable
collatz : Nat⊗Nat, where Nat⊗Nat is the product sort (defined
later; the intuition is that Nat ⊗ Nat has the product set N×N
as its carrier set), and thus reducing the challenge of defining
a least relation in [N → P(N)] to defining a least subset of
P(N × N), which can be done with the MmL µ-binder.

1A Collatz sequence starting from n ≥ 1 is obtained by repeating the
following procedure: if n is even then return n/2; otherwise, return 3n + 1.

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

A. Principle of currying-uncurrying and product sorts
The principle of currying-uncurrying [34], [35] is used in

various settings (e.g., simply-typed lambda calculus [36]) as
a means to reduce the study of multi-argument functions to
the simpler single-argument functions. We here present the
principle in its adapted form that fits best with our needs.

Proposition 26. Let Ms1, . . . ,Msn ,Ms be nonempty sets. The
principle of currying-uncurring means the isomorphism
P(Ms1 × · · · × Msn × Ms)

curry
−−−−−−⇀↽−−−−−−
uncurry

[Ms1 × · · · × Msn → P(Ms)]

defined for all a1 ∈ Ms1, . . . ,an ∈ Msn , b ∈ Ms, α ⊆ Ms1 ×· · ·×

Msn × Ms, and f : Ms1 × · · · × Msn → P(Ms) as:
curry(α)(a1, . . . ,an) = {b ∈ Ms | (a1, . . . ,an, b) ∈ α}

uncurry(f) = {(a1, . . . ,an, b) | b ∈ f (a1, . . . ,an)}.

The tuple set uncurry(f) is also called the graph of f .

In other words, we can mimic an n-ary symbol σ ∈ Σs1...sn ,s

with a set variable of the product sort s1 ⊗ · · · ⊗ sn ⊗ s, whose
(intended) carrier set is exactly the product set Ms1 × . . . Msn ×

Ms . This inspires the following definition.

Definition 27. Let s, s′ be two sorts, not necessarily distinct.
The product sort s⊗ s′ is a sort that is different from s and s′.
Pairing 〈_,_〉s,s′ : s × s′→ s ⊗ s′ is a function and projection
()s,s′ : s⊗ s′× s ⇀ s′ is a partial function, and we drop sorts
s, s′ for simplicity. Define three axioms:

(Injectivity) 〈k1, v1〉 = 〈k2, v2〉 → (k1 = k2) ∧ (v1 = v2)

(Key-Value) 〈k1, v〉(k2) = (k1 = k2) ∧ v

(Product) ∃k∃v.〈k, v〉

that force the carrier set of s ⊗ t to be the product of the ones
of s and t and pairing/projection to be interpreted as expected.
Note that we assume definedness symbols/axioms because we
have used the function and partial function notations as well
as equality in the axioms.

The product of multiple sorts and the associated pair-
ing/projection operations can be defined as derived constructs
as follows. Given (not necessarily distinct) sorts s1, . . . , sn, s
and patterns ϕ1, . . . , ϕn, ϕ,ψ of appropriate sorts, we define:

s1 ⊗ · · · ⊗ sn ⊗ s ≡ s1 ⊗ (s2 ⊗ (· · · ⊗ (sn ⊗ s) . . .))

〈ϕ1, . . . , ϕn, ϕ〉 ≡ 〈ϕ1, 〈. . . , 〈ϕn, ϕ〉 . . .〉〉

ψ(ϕ1, . . . , ϕn) ≡ ψ(ϕ1) . . . (ϕn).

Note that we tacitly use the same syntax _(_, . . . ,_) for both
symbol applications and projections to blur their distinction.
In particular, if σ : s1 ⊗ · · · ⊗ sn ⊗ s is a set variable of the
product sort, then σ(ϕ1, . . . , ϕn) is a well-formed pattern of
sort s iff ϕ1, . . . , ϕn have the appropriate sorts s1, . . . , sn.

B. Defining recursive symbols in matching µ-logic
Definition 28. Let � = (S,Σ) be a signature and σ ∈ Σs1...sn ,s ,
containing the product sorts and pairing/projection symbols.
We use the notation σ(x1, . . . , xn) =lfp ϕ to mean the axiom:
σ(x1, . . . , xn) =

(µσ:s1 ⊗ · · · ⊗ sn ⊗ s.∃x1 . . . ∃xn.〈x1, . . . , xn, ϕ〉)(x1, . . . , xn)

where ∃x1 . . . ∃xn.〈x1, . . . , xn, ϕ〉 captures the graph of ϕ as
a function w.r.t. x1, . . . , xn. Note that in the axiom, all occur-
rences of σ ∈ Σs1...sn ,s in ϕ are tacitly regarded as the set
variable σ:s1 ⊗ · · · ⊗ sn ⊗ s, which are then bound by µ-binder.
A symbol σ ∈ Σs1...sn ,s obeying this axiom is called recursive.

Recursive symbols can be used to define various
(co)inductive data structures and relations. In Section VI, we
will see how first-order logic with least fixpoints (LFP) can
be captured as notations using recursive symbols. In [14], it
is shown how recursive definitions in separation logic, such
as lists and trees, can also be defined by recursive symbols.
However, Definition 28 is not ideally convenient when it comes
to reasoning about recursive symbols because it is complex
and contains many details about the product sorts. Instead, we
want to reason about recursive symbols in a similar way to how
we reason about the basic least fixpoint patterns µX .ϕ, using
a generalized form of (Pre-Fixpoint) and (Knaster-Tarski).
This is achieved by the following theorem.

Theorem 29. Let σ ∈ Σs1...sn ,s be a recursive symbol defined
as σ(x1, . . . , xn) =lfp ϕ, Γ be a theory, ψ be a pattern, and

Γ ` (∃z1 . . . ∃zn.z1 ∈ ϕ1 ∧ · · · ∧ zn ∈ ϕn ∧ ψ[z1/x1, . . . , zn/xn])

→ ψ[ϕ1/x1, . . . , ϕn/xn] for all ϕ1, . . . , ϕn (†)

Then the following hold:
• Pre-Fixpoint: Γ ` ϕ→ σ(x1, . . . , xn);
• Knaster-Tarski: Γ`ϕ[ψ/σ]→ψ implies Γ`σ(x1,..., xn)→
ψ, where ϕ[ψ/σ] is the result of substituting all patterns
of the form σ(ϕ1, . . . , ϕn) in ϕ with ψ[ϕ1/x1, . . . , ϕn/xn].

Condition (†) is a logic incarnation of the property of propaga-
tion (Proposition 3) of ψ as a function w.r.t. x1, . . . , xn, which
requires, intuitively, that ψ “behaves like a symbol”.

VI. Instance: First-Order Logic with Least Fixpoints
First-order logic with least fixpoints (LFP) [7] extends the

syntax of first-order logic formulas with:

ϕ F [lfpR,x1 ,...,xnϕ](t1, . . . , tn)

where R is a predicate variable and ϕ is a formula that is
positive in R. Intuitively, “[lfpR,x1 ,...,xnϕ]” behaves as the least
fixpoint predicate of the operation that maps R to ϕ. Due to its
complexity and our limited space, we skip the formal definition
of the semantics and simply denote the validity relation in
LFP as �LFP ϕ. A comprehensive study on LFP can be found
in [37]. As an example, the following LFP formula holds iff
x is a nonzero multiple of 3:

[lfpR,z z = 3 ∨ ∃z1∃z2.R(z1) ∧ R(z2) ∧ z = plus(z1, z2)](x)

Given the notations of recursive symbols defined in Sec-
tion V, it is straightforward to subsume LFP by extending the
theory ΓFOL defined in Section II-D with product sorts and
pairing/projection symbols, and the syntactic sugar:

[lfpR,x1 ,...,xnϕ](t1, . . . , tn) ≡

(µR : s1⊗ . . .⊗sn⊗Pred.∃x1 . . . ∃xn.〈x1, . . . , xn, ϕ〉)(t1, . . . , tn)

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

for all predicate variables R with argument sorts s1, . . . , sn.
A minor difference here is that we add one additional axiom,
∀x:Pred∀y:Pred.x = y, to constrain that the carrier set of sort
Pred is a singleton set so that all MmL models can be regarded
as FOL/LFP models. This fact is used to prove the “only if”
part in the next theorem.2 We denote the resulting theory ΓLFP.

Theorem 30. If ϕ is an LFP formula, then �LFP ϕ iff ΓLFP � ϕ.

VII. Instances: Modal µ-Calculus and Temporal Logics
We have seen how MmL symbols and patterns can be

used to specify both structure and constraints, such as terms
(Section IV-C) and FOL (Section II-D), as well as various
induction, recursion and least fixpoints schemas (Sections IV-E
and V) over these. These suffice to express and prove program
assertions, including complex state abstractions (see also how
separation logic falls as a fragment of ML in [1]), in contexts
where MmL is chosen as a static state assertion formalism in
program verification frameworks based on Hoare logic [38],
dynamic logic [11], or reachability logic [2]. However, as
explained in Section I, our ultimate goal is to support not only
static state assertions, but any program properties, including
ones that are usually specified using Hoare, dynamic, or
reachability logics. We start the discussion in this section
by showing how MmL symbols and patterns can also be
used to specify dynamic transition relations, which are often
captured by modalities in modal µ-logic and dynamic logic;
in Section VIII we then discuss how MmL also subsumes
reachability logic, which subsumes Hoare logic [6].

A. Modal µ-logic syntax, semantics, and proof system
The syntax of modal µ-logic [8] is parametric in a countably

infinite set PVar of propositional variables. Modal µ-logic
formulas are given by the grammar3:

ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | ◦ϕ | µX . ϕ if ϕ is positive in X

where p,X ∈ PVar are propositional variables. As a conven-
tion, p is used for free variables while X is used for bound
ones. Derived constructs are defined as usual, e.g., •ϕ ≡ ¬◦¬ϕ.
Modal µ-logic semantics is given using transition systems
S = (S,R), with S a nonempty set of states and R ⊆ S × S a
transition relation, and valuations V: PVar→P(S), as follows:
• JpKSV = V(p);
• Jϕ1 ∧ ϕ2KSV = Jϕ1KSV ∩ Jϕ2KSV ;
• J¬ϕKSV = S \ JϕKSV ;
• J◦ϕKSV = {s ∈ S | s R t implies t ∈ JϕKSV for all t ∈ S};
• JµX . ϕKSV =

⋂
{A ⊆ S | JϕKS

V [A/X]
⊆ A};

A modal µ-logic formula ϕ is valid, denoted �µ ϕ, if for all
transition systems S and all valuations V , we have JϕKSV = S.

2We do not need that axiom in defining FOL in ML, as seen in Section II-D,
because there the “if” part is proved via a proof theoretical approach, using
the completeness proof system of FOL and the fact that we can mimic FOL
proofs in ML (see [1]). Since LFP does not have a complete proof system,
we have to add additional axioms to further constrain on the MmL models.

3The modal µ-logic literature often uses �ϕ and ♦ϕ instead of ◦ϕ and
•ϕ. We here use the latter to avoid confusion with the “always” �ϕ and
“eventually” ♦ϕ in LTL and CTL.

A proof system of modal µ-logic is firstly given in [8] and
then proved to be complete in [39]. It extends the proof
system of propositional logic with the following proof rules:

(K) ◦(ϕ1 → ϕ2) → (◦ϕ1 → ◦ϕ2) (N)
ϕ

◦ϕ

(µ1) ϕ[µX .ϕ/X] → µX . ϕ (µ2)
ϕ[ψ/X] → ψ

µX . ϕ→ ψ
We denote the corresponding provability relation as `µ ϕ.
Notice that (K) and (N) are provable in MmL (Proposition 12),
and (µ1) and (µ2) are our (Pre-Fixpoint) and (Knaster-
Tarski). This means that we can easily mimic all modal
µ-logic proofs in MmL (i.e. “(2) ⇒ (3)” in Theorem 31).

B. Defining modal µ-logic in matching µ-logic
To subsume the syntax of modal µ-logic, we define a sig-

nature (of transition systems) �TS = ({State}, {• ∈ ΣTSState,State})
where symbol “•” is called one-path next. We regard proposi-
tional variables in PVar as MmL set variables. We write •ϕ
instead of •(ϕ), and define ◦ϕ ≡ ¬•¬ϕ. Then all modal µ-logic
formulas ϕ are MmL �TS-patterns of sort State. Finally, note
that no axioms are needed; let Γµ be the empty �TS-theory.
An important observation is that the �TS-models are exactly

the transition systems, where • ∈ ΣTSState,State is interpreted as
the transition relation R. Specifically, for any transition system
S = (S,R), we can regard S as a �TS-model where S is the
carrier set of State and •S(t) = {s ∈ S | s R t} contains all
R-predecessors of t. This might seem counter-intuitive at first
glance: why “one-path next” is interpreted as the predecessors
instead of the successors of R? See the following illustration:
· · · s

R
−→ s′

R
−→ s′′ · · · // states

••ϕ •ϕ ϕ // patterns
In other words, •ϕ is matched by states that have at least one
next state that satisfies ϕ, conforming to the intuition. Another
interesting observation is about •ϕ and its dual, ◦ϕ ≡ ¬•¬ϕ,
called all-path next. The difference is that ◦ϕ is matched by
s if for all states t such that s R t, we have t matches ϕ. In
particular, if s has no successor, then s matches ◦ϕ for any ϕ.
This is formally summarized in Proposition 32.
We now feel free to take any transition system S as an MmL

�TS-model. The following conservative extension theorem
shows that our definition of modal µ-logic in MmL is faithful,
both syntactically and semantically. What is insightful about
the theorem is its proof, which can be applied to other logics
discussed in this paper to obtain similar results.

Theorem 31. The following properties are equivalent for all
modal µ-logic formulas ϕ: (1) �µ ϕ; (2) `µ ϕ; (3) Γµ ` ϕ; (4)
Γµ � ϕ; (5) M � ϕ for all �TS-models M such that M � Γµ;
(6) S �µ ϕ for all transition systems S.

Proof sketch: We only need to prove “(2) ⇒ (3)” and
“(5) ⇒ (6)”, as the rest are already proved/known. “(1) ⇒
(2)” follows by the completeness of modal µ-logic, which is
nontrivial but known [39]. “(2) ⇒ (3)” follows by proving
all modal µ-logic proof rules as theorems in MmL (Propo-
sition 12). “(3) ⇒ (4)” follows by the soundness of MmL
(Theorem 24). “(4) ⇒ (5)” follows by Definition 19. “(5) ⇒

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

(6)” follows by proving its contrapositive statement, “2µ ϕ
implies Γµ 2 ϕ”, by taking a transition system S = (S,R) and
a valuation V such that JϕKSV , S, and showing that if we
regard S as a �TS-model and V as an S-valuation in MmL,
then S � Γµ and V(ϕ) , S, which means that Γµ 2 ϕ. Finally,
“(6) ⇒ (1)” follows by definition.
Therefore, modal µ-logic can be regarded as an empty

theory in a vanilla MmL without quantifiers, over a signature
containing only one sort and only one symbol, which is unary.
It is worth mentioning that variants of modal µ-logic with
more modal modalities have been proposed (see [40] for a
survey). At our knowledge, however, all such variants consider
only unary modal modalities and they are only required to obey
the usual (K) and (N) proof rules of modal logic. In contrast,
MmL allows polyadic symbols while still obeying the desired
(K) and (N) rules (see Proposition 12), allows arbitrary further
constraining axioms in MmL theories, and also quantification
over element variables and many-sorted universes.

C. Studying transition systems in MmL
The above suggests that MmL may offer a unifying play-

ground to specify and reason about transition systems, by
means of �TS-theories/models. We can define various tempo-
ral/dynamic operations and modalities as derived constructs
from the basic “one-path next” symbol “•” and the µ-binder,
without the need to extend the syntax and semantics of the
logic. We can constrain the models/transition systems of inter-
est using additional axioms, without the need to modify/extend
the proof system of the logic. In what follows, we show that by
defining proper constructs as syntactic sugar and adding proper
axioms, we can capture faithfully LTL (both finite- and infinite-
trace), CTL, dynamic logic (DL), and reachability logic (RL).

Let us add more temporal modalities as derived constructs
(we have seen “all-path next” ◦ϕ in Section VII-B):

“eventually” ♦ϕ ≡ µX . ϕ ∨ •X

“always” �ϕ ≡ νX . ϕ ∧ ◦X

“(strong) until” ϕ1 U ϕ2 ≡ µX . ϕ2 ∨ (ϕ1 ∧ •X)

“well-founded” WF ≡ µX .◦X // no infinite paths
Proposition 32. Let S = (S,R) be a transition system regarded
as a �TS-model, and let ρ be any valuation and s ∈ S. Then:
• s ∈ ρ̄(•ϕ) if there exists t ∈ S such that s R t, t ∈ ρ̄(ϕ);
in particular, s ∈ ρ̄(•>) if s has an R-successor;

• s ∈ ρ̄(◦ϕ) if for all t ∈ S such that s R t, t ∈ ρ̄(ϕ); in
particular, s ∈ ρ̄(◦⊥) if s has no R-successor;

• s ∈ ρ̄(♦ϕ) if there exists t ∈ S such that s R∗ t, t ∈ ρ̄(ϕ);
• s ∈ ρ̄(�ϕ) if for all t ∈ S such that s R∗ t, t ∈ ρ̄(ϕ);
• s ∈ ρ̄(ϕ1 U ϕ2) if there exists n ≥ 0 and t1, . . . , tn ∈ S such
that s Rt1 R · · ·Rtn, tn ∈ ρ̄(ϕ2), and s, t1, . . . , tn−1 ∈ ρ̄(ϕ1);

• s ∈ ρ̄(WF) if s is R-well-founded, meaning that there is
no infinite sequence t1, t2, · · · ∈ S with s R t1 R t2 R . . . ;

where R∗ =
⋃

i≥0 Ri is the reflexive transitive closure of R.

D. Instances: temporal logics
Since MmL can define modal µ-logic (as an empty theory

over a unary symbol), it is not surprising that it can also define

various temporal logics such as LTL and CTL as theories
whose axioms constrain the underlying transition relations.
What is interesting, in our view, is that the resulting theories
are simple, intuitive, and faithfully capture both the syntax
(provability) and the semantics of these temporal logics.
1) Instance: infinite-trace LTL: The LTL syntax, namely

ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | ◦ϕ | ϕU ϕ

is already subsumed in MmL with the derived constructs we
give in Section VII-C. Other common LTL modalities such
as “always �ϕ” are defined from the “until U” modality in
the usual way. Infinite-trace LTL takes as models transition
systems whose transition relations are linear and infinite into
the future. We assume readers are familiar with the semantics
and proof system of infinite-trace LTL (see [10], e.g.) and skip
their formal definitions. We use “�infLTL” and “`infLTL” to denote
infinite-trace LTL validity and provability, respectively.
To capture the characteristics of both “infinite future” and

“linear future”, we add the following two patterns as axioms:
(Inf) •> (Lin) •X → ◦X

and denote the resulting �TS-theory as ΓinfLTL. Note that by
(Set Variable Substitution), we can prove from axiom (Lin)
that •ϕ → ◦ϕ for all patterns ϕ. Intuitively, (Inf) forces all
states s to have at least one successor, and thus all traces can
be extended to an infinite trace, and (Lin) forces all states s to
have only a linear future. The following theorem shows that
our definition of infinite-trace LTL is faithful both syntactically
and semantically, proved exactly as Theorem 31.

Theorem 33. The following properties are equivalent for all
infinite-trace LTL formulas ϕ: (1) `infLTL ϕ; (2) �infLTL ϕ; (3)
ΓinfLTL ` ϕ; (4) ΓinfLTL � ϕ.

Therefore, infinite-trace LTL can be regarded as a theory
containing two axioms, (Inf) and (Lin), over the same signa-
ture as the theory corresponding to modal µ-logic.
2) Instance: finite-trace LTL: Finite execution traces play

an important role in program verification and monitoring.
Finite-trace LTL considers models that are linear but have
only finite future. The following syntax of finite-trace LTL:

ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | ◦ϕ | ϕUw ϕ

differs from infinite-trace LTL in that the “until Uw” is
weak until, meaning that ϕ1 Uw ϕ2 does not force that ϕ2
holds eventually. Again, we assume readers are familiar with
the semantics and proof system of finite-trace LTL (if not,
see [10]) and use “�finLTL” and “`finLTL” to denote its validity
and provability, respectively.
To subsume the above syntax, we define in MmL:

“weak until” ϕ1 Uw ϕ2 ≡ µX .ϕ2 ∨ (ϕ1 ∧ ◦X).
To capture the characteristics of both finite future and linear
future, we add the following two patterns as axioms:

(Fin) WF ≡ µX .◦X (Lin) •X → ◦X

and call the resulting �TS-theory ΓfinLTL. Intuitively, (Fin)
forces all states to be well-founded, meaning that there is no
infinite execution trace in the underlying transition systems.

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

Theorem 34. The following properties are equivalent for all
finite-trace LTL formula ϕ: (1) `finLTL ϕ; (2) �finLTL ϕ; (3)
ΓfinLTL ` ϕ; (4) ΓfinLTL � ϕ.

Therefore, finite-trace LTL can be regarded as a theory con-
taining two axioms, (Fin) and (Lin), over the same signature
as the theory corresponding to modal µ-logic.

3) Instance: CTL: CTL models are transition systems that
are infinite into the future and allow states to have a branching
future (rather than linear). The following syntax of CTL:
ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | AXϕ | EXϕ | ϕ AU ϕ | ϕ EU ϕ

is extended with the following derived constructs:
EFϕ ≡ true EU ϕ AGϕ ≡ ¬EF¬ϕ
AFϕ ≡ true AU ϕ EGϕ ≡ ¬AF¬ϕ

The names of the CTL modalities suggest their meaning: the
first letter means either “on all paths” (A) or “on one path” (E),
and the second letter means “next” (X), “until” (U), “always”
(G), or “eventually” (F). For example, “AX” is “all-path next”,
“EU” is “one-path until”, etc. We refer readers to [41] for
CTL definitions, semantics and proof system. Here we denote
its validity and provability as “�CTL” and “`CTL”, respectively.
To define CTL as an MmL theory, we add only the axiom

(Inf) for infinite future and use the following syntactic sugar:
AXϕ ≡ ◦ϕ ϕ1 AU ϕ2 ≡ µX . ϕ2 ∨ (ϕ1 ∧ ◦X)

EXϕ ≡ •ϕ ϕ1 EU ϕ2 ≡ µX . ϕ2 ∨ (ϕ1 ∧ •X)

The resulting �TS-theory is denoted as ΓCTL.

Theorem 35. For all CTL formulas ϕ, the following are
equivalent: (1) `CTL ϕ; (2) �CTL ϕ; (3) ΓCTL ` ϕ; (4) ΓCTL � ϕ.

Therefore, CTL can be regarded as a theory over the same
signature as the theory corresponding to modal µ-logic, but
containing one axiom, (Inf). It may be insightful to look at
all three temporal logics discussed in this section through the
lenses of MmL, as theories over a unary symbol signature:
modal µ-logic is the empty and thus the least constrained
theory; CTL comes immediately next with only one axiom,
(Inf), to enforce infinite traces; infinite-trace LTL further
constrains with the linearity axiom (Lin); finally, finite-trace
LTL replaces (Inf) with (Fin). We believe that MmL can serve
as a convenient and uniform framework to define and study
temporal logics. For example, finite-trace CTL can be trivially
obtained as the theory containing only the axiom (Fin), LTL
with both finite and infinite traces is the theory containing only
the axiom (Lin), and CTL with unrestricted (finite or infinite
branch) models is the empty theory (i.e., modal µ-logic).

E. Instance: dynamic logic
Dynamic logic (DL) [11]–[13], [42] is a common logic

used for program reasoning. The DL syntax is parametric
in a set PVar of propositional variables and a set APgm
of atomic programs, each belonging to a different formula
syntactic category:

ϕ F p ∈ PVar | ϕ→ ϕ | false | [α]ϕ
α F a ∈ APgm | α ; α | α ∪ α | α∗ | ϕ?

The first line defines propositional formulas. The second line
defines program formulas, which represent programs built
from atomic ones with the primitive regular expression con-
structs. Define 〈α〉ϕ ≡ ¬[α](¬ϕ). Intuitively, [α]ϕ holds if all
executions of α lead to ϕ, while 〈α〉ϕ holds if there is one
execution of α that leads to ϕ. Common program constructs
such as if-then-else, while-do, etc., can be defined as derived
constructs using the four primitive ones; see [11]–[13]. We let
“�DL” and “`DL” denote the validity and provability of DL.
It is known that DL can be embedded in the variant of modal

µ-logic with multiple modalities (see, e.g., [40]). The idea is
to define a modality [a] for every atomic program a ∈ APgm,
and then to define the four program constructs as least/greatest
fixpoints. We can easily adopt the same approach and associate
an empty MmL theory to DL, over a signature containing
as many unary symbols as atomic programs. However, MmL
allows us to propose a better embedding, unrestricted by the
limitations of modal µ-logic. Indeed, the embedding in [40]
suffers from at least two limitations that we can avoid with
MmL. First, sometimes transitions are not just labeled with
discrete programs, such as in hybrid systems [43] and cyber-
physical systems [44] where the labels are continuous values
such as elapsing time. We cannot introduce for every time
t ∈ R≥0 a modality [t], as only countably many modalities are
allowed. Instead, we may want to axiomatize the domains of
such possibly continuous values and treat them as any other
data. Second, we may want to quantify over such values, be
they discrete or continuous, and we would not be able to do
so (even in MmL) if they are encoded as modalities/symbols.

Let us instead define a signature (of labeled transition
systems) �LTS = ({State,Pgm},ΣLTSλ,Pgm ∪ {• ∈ Σ

LTS
PgmState,State})

where the “one-path next •” is a binary symbol taking an ad-
ditional Pgm argument, and for all atomic programs a ∈ APgm
we add a constant symbol a ∈ ΣLTSλ,Pgm. Just as all �

TS-models
are exactly transition systems (Section VII-B), we have that all
�LTS-models are exactly labeled transition systems. We define
compound programs as derived constructs as follows:
〈α〉ϕ ≡ •(α, ϕ) [α]ϕ ≡ ¬〈α〉¬ϕ

(Seq) [α ; β]ϕ ≡ [α][β]ϕ (Choice) [α ∪ β]ϕ ≡ [α]ϕ ∧ [β]ϕ
(Test) [ψ?]ϕ ≡ (ψ → ϕ) (Iter) [α∗]ϕ ≡ νX . (ϕ ∧ [α]X)

Like for the embedding of modal µ-logic (Section VII-B), no
axioms are needed. Let ΓDL denote the empty �LTS-theory.

Theorem 36. For all DL formulas ϕ, the following are
equivalent: (1) `DL ϕ; (2) �DL ϕ; (3) ΓDL ` ϕ; (4) ΓDL � ϕ.

We point out that the iterative operator [α∗]ϕ is axiomatized
with two axioms in the proof system of DL (see, e.g., [13]):

(DL-Iter1) ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ

(DL-Iter2) ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ

while we just regard it as syntactic sugar, via (Iter). One
may argue that (Iter) desugars to the ν-binder, though, which
obeys the proof rules (Pre-Fixpoint) and (Knaster-Tarski)
that essentially have the same appearance as (DL-Iter1) and
(DL-Iter2). We agree. And that is exactly why we think that

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

we should have one uniform and fixed logic, such as MmL,
where general fixpoint axioms are given to specify and reason
about any fixpoint properties of any domains and to develop
general-purpose automatic tools and provers. When it comes
to specific domains and special-purpose logics, we can define
them as theories/notations in MmL, as what we have done
in this section for modal µ-logic and all its fragment logics.
Often, these special-purpose logics are simpler than MmL
and more computationally efficient. In particular, modal µ-
logic and all its fragment logics shown in this section are
not only complete but also decidable [20], while MmL does
not have any complete proof system and thus its validity is
not semi-decidable. Therefore, the existing decision procedures
and completeness results of these special-purpose logics give
decision procedures and (global) completeness results (such as
Theorem 31) for the corresponding MmL theories.

VIII. Instance: Reachability Logic
Reachability logic (RL) [2] is an approach to program ver-

ification using operational semantics. Different from other ap-
proaches such as Hoare-style verification, RL has a language-
independent proof system that offers sound and relatively
complete deduction for all programming languages. RL is the
logic underlying the K framework [45], which has been used to
define the formal semantics of various real languages such as
C [3], Java [4], and JavaScript [5], yielding program verifiers
for all these languages at no additional cost [6].

In spite of its generality w.r.t. languages, reachability logic
is unfortunately limited to specifying and deriving only reach-
ability properties. This limitation was one of the factors that
motivated the development of MmL. Fig. 2 shows a few RL
proof rules; notice that unlike Hoare logic proof rules, RL
proof rules are not specific to any particular programming
language. The programming language is given through its
operational semantics as a set of axiom rules, to be used via
the (Axiom) proof rule. The characteristic feature of RL is its
(Circularity) rule, which supports reasoning about circular
behavior and recursive program constructs. In this subsection,
we show how RL is faithfully defined in MmL and all its proof
rules, including (Circularity), can be proved in MmL.

A. RL syntax, semantics, and proof system
RL is parametric in a model of ML (without µ) called

the configuration model. Specifically, fix a signature (of static
program configurations) �cfg which may have various sorts
and symbols, among which there is a distinguished sort Cfg.
Fix a �cfg-model Mcfg called the configuration model, where
Mcfg

Cfg is the set of all configurations. RL formulas are called
reachability rules, or simply rules, and have the form ϕ1 ⇒ ϕ2
where ϕ1, ϕ2 are ML (without µ) �cfg-patterns. A reachability
system S is a finite set of rules, which yields a transition system
S = (Mcfg

Cfg,R) where s R t iff there exist a rule ϕ1 ⇒ ϕ2 ∈ S
and an Mcfg-valuation ρ such that s ∈ ρ̄(ϕ1) and t ∈ ρ̄(ϕ2). A
rule ψ1 ⇒ ψ2 is S-valid, denoted S �RL ψ1 ⇒ ψ2, iff for all
Mcfg

Cfg-valuations ρ and configurations s ∈ ρ̄(ψ1), either there is
an infinite trace s R t1 Rt2 R . . . in S or there is a configuration

(Axiom)
ϕ1 ⇒ ϕ2 ∈ A
A `C ϕ1 ⇒ ϕ2

(Transitivity)
A `C ϕ1 ⇒ ϕ2 A ∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

(Consequence)
Mcfg �ϕ1�ϕ′1 A `C ϕ′1 ⇒ ϕ′2 Mcfg �ϕ′2�ϕ2

A `C ϕ1 ⇒ ϕ2

(Circularity)
A `C∪{ϕ1⇒ϕ2 } ϕ1 ⇒ ϕ2

A `C ϕ1 ⇒ ϕ2

Fig. 2. Some selected proof rules in the proof system of reachability logic

t such that s R∗ r and t ∈ ρ̄(ψ2). Therefore, validity in RL is
defined in the spirit of partial correctness.
The sound and relatively complete proof system of RL

derives reachability logic sequents of the form A `C ϕ1 ⇒ ϕ2
where A (called axioms) and C (called circularities) are finite
sets of rules. Initially we start with A = S and C = ∅.
As the proof proceeds, more rules can be added to C via
(Circularity) and then moved to A via (Transitivity),
which can then be used via (Axiom). We write S `RL ψ1 ⇒ ψ2
to mean that S `∅ ψ1 ⇒ ψ2. Notice (Consequence) consults
the configuration model Mcfg for validity, so the completeness
result is relative to Mcfg. We recall the following result [2]:

Theorem 37. For all reachability systems S satisfying some
reasonable technical assumptions (see [2]) and all rules ψ1 ⇒
ψ2, we have S �RL ψ1 ⇒ ψ2 iff S `RL ψ1 ⇒ ψ2.

B. Defining reachability logic in matching µ-logic

We define the extended signature �RL = �cfg∪{• ∈ ΣCfg,Cfg}
where “•” is a unary symbol called one-path next. To capture
the semantics of reachability rules ϕ1 ⇒ ϕ2, we define:

“weak eventually” ♦wϕ ≡ νX . ϕ ∨ •X // equal to ¬WF ∨ ♦ϕ
“reaching star” ϕ1 ⇒

∗ ϕ2 ≡ ϕ1 → ♦wϕ2

“reaching plus” ϕ1 ⇒
+ ϕ2 ≡ ϕ1 → •♦wϕ2

Notice that the “weak eventually” ♦wϕ is defined similarly
to the “eventually” ♦ϕ ≡ µX . ϕ ∨ •X , but instead of using
least fixpoint µ-binder, we define it as a greatest fixpoint. One
can prove that ♦wϕ = ¬WF ∨ ♦ϕ, that is, a configuration γ
satisfies ♦wϕ if either it satisfies ♦ϕ, or it is not well-founded,
meaning that there exists an infinite execution path from γ.
Also notice that “reaching plus” ϕ1 ⇒

+ ϕ2 is a stronger
version of “reaching star”, requiring that ♦wϕ2 should hold
after at least one step. This progressive condition is crucial to
the soundness of RL reasoning: as shown in (Transitivity),
circularities are flushed into the axiom set only after one
reachability step is established. This leads us to the following
translation from RL sequents to MmL patterns.

Definition 38. Given a rule ϕ1 ⇒ ϕ2, define the MmL pattern
�(ϕ1 ⇒ ϕ2) ≡ �(ϕ1 ⇒

+ ϕ2) and extend it to a rule set A as
follows: �A ≡

∧
ϕ1⇒ϕ2∈A�(ϕ1 ⇒ ϕ2). Define the translation

RL2MmL from RL sequents to MmL patterns as follows:

RL2MmL(A `C ϕ1 ⇒ ϕ2) = (∀�A) ∧ (∀◦�C) → (ϕ1 ⇒
? ϕ2)

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

where ? = ∗ if C is empty and ? = + if C is nonempty. We
use ∀ϕ as a shorthand for ∀®x.ϕ where ®x = FV(ϕ). Recall that
the “◦” in ∀◦�C is “all-path next”.

Hence, the translation of A `C ϕ1 ⇒ ϕ2 depends on whether
C is empty or not. When C is nonempty, the RL sequent
is stronger in that it requires at least one step being made
in ϕ1 ⇒ ϕ2. Axioms (those in A) are also stronger than
circularities (those in C) in that axioms always hold, while
circularities only hold after at least one step because of the
leading all-path next “◦”; and since the “next” is an “all-
path” one, it does not matter which step is actually made,
as circularities hold on all next states.

Theorem 39. Let ΓRL = {ϕ ∈ PatternML
Cfg | Mcfg � ϕ} be the

set of all ML patterns (without µ) of sort Cfg that hold in Mcfg.
For all RL systems S and rules ϕ1 ⇒ ϕ2 satisfying the same
technical assumptions in [2], the following are equivalent: (1)
S `RL ϕ1 ⇒ ϕ2; (2) S �RL ϕ1 ⇒ ϕ2; (3) ΓRL ` RL2MmL(S `∅
ϕ1 ⇒ ϕ2); (4) ΓRL � RL2MmL(S `∅ ϕ1 ⇒ ϕ2).

Therefore, provided that an oracle for validity of ML
patterns (without µ) in Mcfg is available, the MmL proof
system is capable of deriving any reachability property that
can be derived with the RL proof system. This result makes
MmL an even more fundamental logic foundation for the K
framework and thus for programming language specification
and verification than RL, because it can express significantly
more properties than partial correctness reachability.

IX. Future and Related Work
We discuss future work, open problems, and related work.

A. Relation to modal logics
Due to the duality between MmL symbols and modal logic

modalities (Section III, Proposition 12), ML can be regarded
as a nontrivial extension of modal logics. There are various
directions to extend the basic propositional modal logic in the
literature [20]. One is the hybrid extension, where first-order
quantifiers “∀” and “∃” are added to the logic, as well as
state variables/names that allow us to specify one particular
state. Another is the polyadic extension, where modalities can
take not just one argument, but any number of arguments,
and there can be multiple modalities. MmL can be seen as a
combination of both extensions, further extended with multiple
sort universes. The local completeness of H (Theorem 16)
also extends the completeness results of its fragment logics,
including hybrid modal logic [21] and many-sorted polyadic
modal logic [19].

B. Stronger completeness results of H
There are various notions of completeness for modal logics

(see, e.g., [46, Appendix B.6]). We recall three of them,
adapted to the context of ML and its proof system H , from
the strongest to the weakest:
• Global completeness: Γ �ML ϕ implies Γ `H ϕ;
• Strong local completeness: Γ �locML ϕ implies Γ `loc

H
ϕ;

• Weak local completeness: �ML ϕ implies `H ϕ;
where Γ �locML ϕ, called local semantic entailment, means that⋂
ψ∈Γ ρ̄(ψ) ⊆ ρ̄(ϕ) for all models M and valuations ρ; Γ `loc

H
ϕ,

called local provability, means that there exists a finite subset
Γ0 ⊆fin Γ such that `H ∧Γ0 → ϕ, where ∧Γ0 is the conjunction
of all patterns in Γ0. Theorem 16 is a weak local completeness
result for H , but the way we actually prove it is by proving
the strong local completeness theorem and then let Γ = ∅
(see [14]). What is unknown and left as future work is global
completeness. Theorem 15 shows that global completeness
holds for ML when Γ contains definedness symbols and
axioms. We conjecture global completeness holds in general.

C. Decidability of matching µ-logic without FOL quantifiers

Modal µ-logic is known for its high expressiveness as
well as its decidability, given that it can capture the true
least/greatest fixpoints in models, As a result, modal µ-logic
stands out from other fixpoint logics, such as LFP. As seen
in Section VII, modal µ-logic can be seen as the syntactic
fragment of MmL without FOL quantifiers (i.e., ∃-binder) or
element variables that contains only one sort and one unary
symbol. A natural question is whether the decidability result
stil holds if we consider the MmL fragment without FOL
quantifiers or element variables but containing multiple sorts
and symbols of arbitrary arities. We conjecture it holds.

D. Alternative semantics of matching µ-logic

MmL cannot have a sound and complete proof system
because we can precisely define (N,+,×) (see Proposition 23).
On the other hand, the proof systemHµ turned out to be strong
enough to prove all the proof rules of all the proof systems
of all the logics discussed in this paper. Therefore, a natural
question is whether we can find alternative models for MmL
that make Hµ complete. A promising direction towards such
an alternative semantics is to consider the so-called Henkin
semantics or general semantics, where the least fixpoint pattern
µX . ϕ does not evaluate to the true least fixpoint in models,
but to the least fixpoint that is definable in the logic.

X. Conclusion

We made two main contributions in this paper. Firstly, we
proposed a new sound and complete proof system H for
matching logic (ML). Secondly, we extended ML with the
least fixpoint µ-binder and proposed matching µ-logic (MmL).
We showed the expressiveness of MmL by defining a variety
of common logics about induction/fixpoints/verification in
MmL. We hope that MmL may serve as a promising unify-
ing foundation for specifying and reasoning about induction,
fixpoints, as well as model checking and program verification.
Acknowledgments: We thank the anonymous reviewers for
their valuable comments on drafts of this paper. The work
presented in this paper was supported in part by NSF CNS
16-19275. This material is based upon work supported by
the United States Air Force and DARPA under Contract No.
FA8750-18-C-0092.

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

References

[1] G. Roşu, “Matching logic,” Logical Methods in Computer Science,
vol. 13, no. 4, pp. 1–61, 2017.

[2] G. Roşu, A. Ştefănescu, Ş. Ciobâcă, and B. M. Moore, “One-path
reachability logic,” in Proceedings of the 28th Symposium on Logic in
Computer Science (LICS’13). IEEE, 2013, pp. 358–367.

[3] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the undefinedness of
C,” in Proceedings of the 36th annual ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’15). ACM,
2015, pp. 336–345.

[4] D. Bogdănaş and G. Roşu, “K-Java: A complete semantics of Java,”
in Proceedings of the 42nd Symposium on Principles of Programming
Languages (POPL’15). ACM, 2015, pp. 445–456.

[5] D. Park, A. Ştefănescu, and G. Roşu, “KJS: A complete formal semantics
of JavaScript,” in Proceedings of the 36th annual ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’15). ACM, 2015, pp. 346–356.

[6] A. Ştefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu, “Semantics-based
program verifiers for all languages,” in Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’16). ACM, 2016, pp.
74–91.

[7] Y. Gurevich and S. Shelah, “Fixed-point extensions of first-order logic,”
Annals of Pure and Applied Logic, vol. 32, pp. 265–280, 1986.

[8] D. Kozen, “Results on the propositional µ-calculus,” in Proceedings
of the 9th International Colloquium on Automata, Languages and
Programming (ICALP’82). Springer, 1982, pp. 348–359.

[9] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (SFCS’77).
IEEE, 1977, pp. 46–57.

[10] G. Roşu, “Finite-trace linear temporal logic: Coinductive completeness,”
Formal Methods in System Design, vol. 53, no. 1, pp. 138–163, 2018.

[11] M. J. Fischer and R. E. Ladner, “Propositional dynamic logic of regular
programs,” Journal of Computer and System Sciences, vol. 18, no. 2,
pp. 194–211, 1979.

[12] D. Harel, “Dynamic logic,” in Handbook of Philosophical Logic, ser.
Synthese Library. Springer, 1984, vol. 165, pp. 497–604.

[13] D. Harel, J. Tiuryn, and D. Kozen, Dynamic logic. MIT Press, 2000.
[14] X. Chen and G. Roşu, “Matching µ-logic,” University of Illinois

at Urbana-Champaign, Tech. Rep., 2019. [Online]. Available: http:
//hdl.handle.net/2142/102281

[15] F. Lucio-Carrasco and A. Gavilanes-Franco, “A first order logic for
partial functions,” in Proceedings of the 6th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’89). Springer, 1989,
pp. 47–58.

[16] K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, Eds., Algebra, meaning,
and computation, 1st ed., ser. Theoretical Computer Science and General
Issues. Springer, 2006, vol. 4060.

[17] J. R. Shoenfield, Mathematical logic. Addison-Wesley Pub. Co, 1967.
[18] P. Blackburn, M. d. Rijke, and Y. Venema, Modal logic. Cambridge

University Press, 2001.
[19] I. Leustean and N. Moanga, “A many-sorted polyadic modal

logic,” CoRR, vol. abs/1803.09709, 2018. [Online]. Available: http:
//arxiv.org/abs/1803.09709

[20] P. Blackburn, J. van Benthem, and F. Wolter, Eds., Handbook of modal
logic, 1st ed. Elsevier, 2006, vol. 3.

[21] P. Blackburn and M. Tzakova, “Hybrid completeness,” Logic Journal of
IGPL, vol. 6, no. 4, pp. 625–650, 1998.

[22] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,”
Pacific Journal of Mathematics, vol. 5, no. 2, pp. 285–309, 1955.

[23] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, “Initial
algebra semantics and continuous algebras,” Journal of the ACM, vol. 24,
no. 1, pp. 68–95, 1977.

[24] K. Gödel, On formally undecidable propositions of principia Mathemat-
ica and related systems. Courier corporation, 1992.

[25] A. I. Malc’ev, “Axiomatizable classes of locally free algebras of various
type,” The Metamathematics of Algebraic Systems: Collected Papers,
vol. 1967, pp. 262–281, 1936.

[26] L. Löwenheim, “Über möglichkeiten im relativkalkül,” Mathematische
Annalen, vol. 76, no. 4, pp. 447–470, 1915.

[27] L. Kovács, S. Robillard, and A. Voronkov, “Coming to terms with quan-
tified reasoning,” in Proceedings of the 44th ACM SIGPLAN Symposium

on Principles of Programming Languages (POPL’17). ACM, 2017, pp.
260–270.

[28] J. C. Blanchette, N. Peltier, and S. Robillard, “Superposition with
datatypes and codatatypes,” in Proceedings of the 9th International Joint
Conference on Automated Reasoning (IJCAR’18). Springer, 2018, pp.
370–387.

[29] D. Park, “Fixpoint induction and proofs of program properties,”Machine
Intelligence, vol. 5, pp. 59–78, 1969.

[30] P. Hitchcock and D. Park, “Induction rules and termination roofs,” in
Proceedings of the 1st International Colloquium on Automata, Lan-
guages and Programming (ICALP’72). Springer, 1972, pp. 225–251.

[31] Z. Ésik, “Completeness of Park induction,” Theoretical Computer Sci-
ence, vol. 177, no. 1, pp. 217–283, 1997.

[32] G. Peano, Arithmetices principia: Nova methodo exposita. Fratres
Bocca, 1889.

[33] E. Mendelson, Introduction to mathematical logic. Springer, 1979.
[34] M. Schönfinkel, “Über die Bausteine der mathematischen Logik,” Math-

ematische annalen, vol. 92, no. 3-4, pp. 305–316, 1924.
[35] H. B. Curry, Combinatory logic. Amsterdam: North-Holland Pub. Co.,

1958.
[36] A. Church, “A formulation of the simple theory of types,” The Journal

of Symbolic Logic, vol. 5, no. 2, pp. 56–68, 1940.
[37] S. Kreutzer, “Pure and applied fixed-point logics,” Ph.D. dissertation,

Bibliothek der RWTH Aachen, 2002.
[38] C. A. R. Hoare, “An axiomatic basis for computer programming,”

Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.
[39] I. Walukiewicz, “Completeness of Kozen’s axiomatisation of the propo-

sitional µ-calculus,” Information and Computation, vol. 157, no. 1-2,
pp. 142–182, 2000.

[40] G. Lenzi, “The modal µ-calculus: A survey,” Task quarterly, vol. 9,
no. 3, pp. 293–316, 2005.

[41] E. A. Emerson, “Temporal and modal logic,” in Formal Models and
Semantics. Elsevier, 1990, pp. 995–1072.

[42] V. Pratt, “Semantical consideration on Floyd-Hoare logic,” in Proceed-
ings of the 17th Annual Symposium on Foundations of Computer Science
(SFCS’76). IEEE, 1976, pp. 109–121.

[43] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,” in Hybrid systems. Springer, 1993, pp. 209–229.

[44] E. A. Lee, “Cyber physical systems: Design challenges,” in Proceedings
of the 11th IEEE Symposium on Object Oriented Real-Time Distributed
Computing (ISORC’08). IEEE, 2008, pp. 363–369.

[45] G. Rosu, “K—A semantic framework for programming languages and
formal analysis tools,” in Dependable Software Systems Engineering.
IOS Press, 2017.

[46] M. Marx and Y. Venema, Multi-dimensional modal logic, ser. Applied
Logic Series, D. M. Gabbay, Ed. Springer, 1997, vol. 4.

Authorized licensed use limited to: University of Illinois. Downloaded on November 14,2022 at 16:02:17 UTC from IEEE Xplore. Restrictions apply.

