
© 2023 Xiaohong Chen

MATCHING µ-LOGIC

BY

XIAOHONG CHEN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Professor Grigore Roşu, Chair
Professor José Meseguer
Professor Madhusudan Parthasarathy
Doctor Margus Veanes, Microsoft Research

Abstract

We present matching µ-logic, which is a unifying logic for specifying and reasoning about
programs and programming languages. Matching µ-logic uses its formulas, called patterns,
to uniformly express programs’ static structures, dynamic behaviors, and logical constraints.
Programming languages can be formally defined as matching µ-logic theories, which include
patterns as axioms. The correctness of programming language implementations and tools
can be proved using a fixed proof system. These proofs can be encoded as proof objects and
automatically checked using a small proof checker.

An important feature of matching µ-logic is its µ operator, which provides direct support
for specifying fixpoints and thus enables to specify and reason about induction and recursion.

We study the proof theory of matching µ-logic and prove a few important completeness
results. We study the expressive power of matching µ-logic and show that many important
logics, calculi, and foundations of computations, especially those featuring fixpoints/induc-
tion/recursion, can be defined as matching µ-logic theories.

We study automated reasoning for matching µ-logic, with a focus on fixpoint reasoning.
We propose a set of high-level automated proof rules that can be applied to many matching
µ-logic theories, and thus enable automated reasoning in them.

We propose applicative matching µ-logic, abbreviated as AML, as a simple instance of
matching µ-logic that retains all of its expressive power. AML is a fragment of matching
µ-logic where we eliminate sorts and many-sorted symbols from matching µ-logic, because
they are definable using axioms and theories. We present an encoding of matching µ-logic
into AML and implement a 200-line proof checker for AML using Metamath.

We study proof-certifying program execution and formal verification, where the correctness
of an execution/verification task is established by an AML proof object, serving as a machine-
checkable correctness certificate. Our approach is based on the K formal language semantics
framework. We design and implement procedures that output AML proof objects for the
language-agnostic program interpreter and formal verifier of K, which are parametric in the
formal semantics of a programming language. This way, we reduce checking the correctness
of a language task (i.e., executing or verifying a program) to checking the corresponding
AML proof objects using the proof checker.

We hope to demonstrate that matching µ-logic can serve as a unifying foundation for
programming, where programming languages are defined as theories, and the correctness of
language tools is established by machine-checkable proof objects.

ii

To my parents.

iii

Acknowledgments

I express my sincere gratitude to my advisor Grigore Roşu for his continuous support
during my studies. I thank my thesis committee for their insightful comments and valuable
feedback. I thank all my collaborators and fellow doctoral students. And finally, I want to
give my deepest appreciation to my parents, who assisted me through this long journey with
advice and love.

iv

Table of Contents

Chapter 1 INTRODUCTION . 1

Chapter 2 PRELIMINARIES . 4
2.1 Basic Mathematics . 4
2.2 First-Order Logic . 6
2.3 First-Order Logic with Least Fixpoints . 8
2.4 Second-Order Logic . 9
2.5 Equational Specifications and Initial Algebra Semantics 11
2.6 Separation Logic . 14
2.7 Modal Logic K . 16
2.8 Modal µ-Calculus . 18
2.9 Temporal Logics . 18
2.10 Dynamic Logic . 23
2.11 λ-Calculus . 25
2.12 Term-Generic First-Order Logic . 27
2.13 Matching Logic . 29
2.14 Reachability Logic . 38
2.15 K Framework . 39

Chapter 3 TWO COMPLETENESS THEOREMS FOR MATCHING LOGIC . . . 41
3.1 Matching Logic Proof System H . 41
3.2 Definedness Completeness . 50
3.3 Local Completeness . 58

Chapter 4 FROM MATCHING LOGIC TO MATCHING µ-LOGIC 70
4.1 Hints on Necessity of Extension . 71
4.2 Matching µ-Logic Syntax, Semantics, and Proof System 72
4.3 Reduction to Monadic Second-Order Logic 77

Chapter 5 EXPRESSIVE POWER . 79
5.1 Defining Recursive Symbols . 79
5.2 Defining FOL with Least Fixpoints . 82
5.3 Defining Separation Logic with Recursive Symbols 83
5.4 Defining Equational Specifications . 83
5.5 Defining Initial Algebra Semantics . 84
5.6 Defining Second-Order Logic . 91
5.7 Defining Transition Systems . 95
5.8 Defining Modal µ-Calculus . 97

v

5.9 Defining Temporal Logics . 98
5.10 Defining Dynamic Logic . 101
5.11 Defining Reachability Logic . 102
5.12 Defining λ-Calculus . 103
5.13 Defining Term-Generic Logic . 112
5.14 Discussion . 115
5.15 Proofs . 117

Chapter 6 REASONING ABOUT FIXPOINTS IN MATCHING µ-LOGIC 133
6.1 Overview . 133
6.2 Automated Proof Framework for Matching µ-Logic 136
6.3 Examples . 144
6.4 Algorithms . 152
6.5 Evaluation . 155

Chapter 7 APPLICATIVE MATCHING µ-LOGIC (AML) 159
7.1 AML as an Instance of Matching µ-Logic . 161
7.2 Defining Matching µ-Logic in AML . 163
7.3 Case Study: Defining Advanced Sort Structures in AML 165
7.4 AML Proof Checker . 168

Chapter 8 PROOF-CERTIFYING PROGRAM EXECUTION 177
8.1 Overview . 178
8.2 A Running Example . 179
8.3 Translating K to AML . 180
8.4 Generating Proofs for One-Step Executions 181
8.5 Evaluation . 183

Chapter 9 PROOF-CERTIFYING FORMAL VERIFICATION 186
9.1 Overview . 186
9.2 Generating Proofs for Symbolic Execution 188
9.3 Generating Proofs for Pattern Subsumption 193
9.4 Generating Proofs for Coinduction . 193
9.5 Evaluation . 196
9.6 Discussion . 198

Chapter 10 RELATED WORK . 204
10.1 Formal Semantics and Programming Language Frameworks 204
10.2 Existing Approaches to Defining Binders . 205
10.3 Existing Approaches to Automated Fixpoint Reasoning 209
10.4 Existing Approaches to Trustworthy Language Tools 210

Chapter 11 CONCLUSION . 214

References . 216

vi

Chapter 1: INTRODUCTION

Unlike natural languages that allow vagueness and ambiguity, programming languages must
be precise and unambiguous. Only with rigorous definitions of programming languages, called
their formal semantics, can we guarantee the reliability, safety, and security of computing
systems. Our vision is thus a unifying programming language framework based on the formal
semantics of programming languages, as shown in Figure 1.1. In such an ideal language
framework, language designers only need to define the formal semantics of their languages. All
the implementations and tools of a given programming language are automatically generated
from the formal semantics of the language by the framework.

Our unifying language framework is based on a unifying logical foundation, where the
formal semantics of programming languages are defined as logical theories, consisting of
logical formulas as axioms that specify the behaviors of programs. Correctness of language
implementations and tools is proved using a fixed formal proof system. These formal proofs can
be encoded as proof objects and checked by a proof checker. A unifying language framework
with a unifying logical foundation allows us to reduce the correctness of computation and
programming in general to something as simple as proof checking.

Previous work has pursued the above vision with the K framework (abbreviated K) [1] and
matching logic [2]. K is a rewrite-based language framework that allows to define formal
semantics of programming languages using configurations and rewrite rules. From the formal
semantics of any given programming language, K automatically generates a set of language
tools, including a parser, a program interpreter, a formal verifier, and a program equivalence
checker [3, 4]. K has been used to define the complete executable formal semantics of many
large languages, such as C [5], Java [6], JavaScript [7], Python [8], Ethereum virtual machines
bytecode [9], and x86-64 [10]. Matching logic has served as the logical foundation for the
static aspects of K. The core of matching logic is a notion of its formulas called patterns,
which can be used to uniformly specify and reason about program configurations and logical
constraints.

However, matching logic has two major limitations that prevent it from being able to
serve as the unifying logical foundation for programming. The first limitation is the lack
of a universal proof system that supports formal reasoning in all matching logic theories.
The known matching logic proof system P proposed in [2] is not universal because it only
supports formal reasoning in a subset of theories that feature definedness—a mathematical
instrument that can be used to define equality. If the underlying theory does not feature
definedness, P cannot be used to do formal reasoning in it.

1

Figure 1.1: Vision of a Unifying Programming Language Framework

The second limitation of matching logic is the lack of support for fixpoints. Fixpoints are
ubiquitous and unavoidable in computer science. Without a direct support for fixpoints,
matching logic is insufficient for dealing with topics such as inductive datatypes, induction
principles, some temporal properties about programs, or formal verification. To handle these
fixpoints-related topics, one has to defer them outside matching logic to some other logics
or frameworks such as Coq [11], or extend matching logic with additional infrastructure
for fixpoints. For example, matching logic has been extended to reachability logic [12] that
provides additional coinduction-based proof rules for formal verification.

This work addresses the above two limitations of matching logic. For the first limitation,
we propose a new proof system H for matching logic that is universal and works with all
theories. We show that H is sound for all theories, meaning that if a pattern (i.e., a matching
logic formula) is provable using H in a given theory, then it holds in that theory. The other
direction is known as the completeness of H. While we do not know whether H is complete
for all theories, we present two important completeness results. The first is the definedness
completeness theorem (Theorem 3.4) which states that H is complete for every theory that
features definedness. The second is the local completeness theorem (Theorem 3.8), which
states that H is complete for the empty theory. We present proof system H in Chapter 3.

For the second limitation, we extend matching logic to matching µ-logic, by adding a µ
operator that builds least fixpoints. Greatest fixpoints are definable using least fixpoints.
We also extend the proof system H to Hµ, which has two proof rules dedicated to fixpoint

2

reasoning, inspired from the Knaster-Tarski fixpoint theorem (Theorem 2.1). This way,
matching µ-logic can specify and reason about fixpoints in a principled way. We present
matching µ-logic and its proof system Hµ in Chapter 4.

We then proceed to study the expressive power of matching µ-logic. We show that many
important logics, calculi, and foundations of computations, especially those featuring fixpoints,
can be defined as matching µ-logic theories. These includes FOL with least fixpoints, initial
algebra semantics, separation logic with recursive predicates, modal µ-calculus, various
temporal logics, dynamic logic, reachability logic, λ-calculus, and type systems. We present
the above results about the expressive power of matching µ-logic in Chapter 5.

We study automated reasoning for matching µ-logic with a focus on fixpoint reasoning. We
propose a unifying proof framework that consists of high-level proof rules that are derivable
using the proof system Hµ. Automated reasoning becomes proof search over the proposed
high-level proof rules, with heuristics guiding the proof search for better performance. We
present the above unifying proof framework based on matching µ-logic in Chapter 6.

We propose and study applicative matching µ-logic, abbreviated as AML, which is a simple
instance of matching µ-logic that retains all of its expressive power. AML is obtained by
eliminating sorts and many-sorted symbols from matching µ-logic because they can be defined
by axioms. We present an encoding of matching µ-logic into AML. We implement a proof
checker for AML using Metamath [13] in 200 lines of code. AML proofs can be encoded as
proof objects and checked by the 200-line proof checker, which serves as a small trust base of
checking any AML proofs. We present AML and the proof checker in Chapter 7.

Finally, we put everything together and study proof-certifying program execution and
formal verification, based on K and AML. We implement proof generation procedures for the
program interpreter and the formal verifier of K, which are parametric in the formal semantics
of a programming language. The proof generation procedures output AML proof objects as
correctness certificates for the said interpreter and verifier. This way, we reduce checking the
correctness of program execution and formal verification to checking the corresponding AML
proof objects. We discuss proof-certifying program execution in Chapter 8 and proof-certifying
formal verification in Chapter 9.

The vision of a unifying language framework and a unifying logic foundation for program-
ming is a grand one. Related study started in the 1960s, with the proposal of various formal
semantics notions and styles [14, 15, 16, 17, 18, 19, 20]. After more than half a century of
research on the topic, great progress has been made in terms of the scalability, usability,
robustness, popularity, reusability, and trustworthiness of semantics-based language tools,
moving us closer to realizing the above vision, which we believe, with evidence present in
this work, is in within our reach in the near future with matching µ-logic.

3

Chapter 2: PRELIMINARIES

This preliminary chapter consists of three parts. The first part is Section 2.1, where
we review the basic definitions and notation in mathematics, such as sets, functions, and
relations. The second part is Sections 2.2–2.14, where we introduce the logics, calculi, and
foundations of computation that are relevant to this work. The third part is Section 2.15,
where we present an overview of the K formal language semantics framework.

2.1 BASIC MATHEMATICS

Let A be a set. The size or cardinality of A is denoted by card(A). The powerset of A is
denoted by P(A). The empty set is denoted by ∅.

Let A and B be two sets. The intersection of A and B is denoted by A ∩B. The union
of A and B is denoted by A ∪ B. The set difference of A and B is denoted by A \ B and
defined by A \B = {a ∈ A | a ̸∈ B}. The set symmetric difference of A and B is denoted by
A△B and defined by A△B = (A \B) ∪ (B \ A). If A ∩B = ∅, we say that A and B are
disjoint. We write A ∪̇B to mean A∪B, with the assumption that A and B are disjoint. We
write A ⊆ B to mean that A is a subset of B. We write A ⊊ B to mean that A is a strict
subset of B, that is, A ⊆ B and A ̸= B.

A total function or simply function from A to B is denoted by f : A→ B, whose domain
is domain(f) = A and codomain is codomain(f) = B. The set of all functions from A to B
is denoted by BA or [A→ B]. The image of f is image(f) = {f(a) | a ∈ A}. We call f an
injective function or injection iff f(a1) = f(a2) implies a1 = a2 for any a1, a2 ∈ A. We call f
a surjective function or surjection iff image(f) = codomain(f). We call f a bijective function
or bijection iff it is both injective and surjective. For a subset A0 ⊆ A, the restriction of f
over A0, denoted by f |A0 : A0 → B, is a function defined by

f |A0(a) = f(a) for all a ∈ A0 (2.1)

A partial function from A to B is denoted by f : A ⇀ B, where domain(f) ⊆ A. Total
functions are special instances of partial functions with domain(f) = A. The set of all partial
functions from A to B is denoted by [A ⇀ B]. We write f : A ⇀fin B to mean that domain(f)

is finite. The set of all finite-domain partial functions from A to B is denoted by [A ⇀fin B].
We use ∅ to denote a partial function with an empty domain. For a ∈ A \ domain(f), we say
that f is undefined at a, written f(a) = ⊥.

For a function (or partial function) f from A to B, we use f [b0/a0] where a0 ∈ A and

4

b0 ∈ B to denote the updated function (or updated partial function) f ′ such that f ′(a0) = b0

and f ′(a) = f(a) for all a ∈ A \ {a0}. For two functions (or partial functions) f, g : A→ B,
we write f a0∼ g where a0 ∈ A to mean that f(a) = g(a) for all a ∈ A \ {a0}. We write f A0∼ g

where A0 ⊆ A to mean that f a0∼ g for all a ∈ A \ A0.
We say that partial functions f, g : A ⇀ B are disjoint, if domain(f) ∩ domain(g) = ∅. For

disjoint partial functions f, g : A ⇀ B, their disjoint union is a partial function f ∪̇g : A ⇀ B,
given by

(f ∪̇ g)(a) =

f(a) if a ∈ domain(f)

g(a) if a ∈ domain(g)

⊥ otherwise

(2.2)

Note that domain(f ∪̇ g) = domain(f) ∪̇ domain(g). For simplicity, we automatically require
that f and g are disjoint whenever we write f ∪̇ g.

Given f : P(A)→ P(A), a fixed point or fixpoint of f is a set A0 ⊆ A such that f(A0) = A0.
A pre-fixpoint (or post-fixpoint) of f is a set A0 ⊆ A such that f(A0) ⊆ A0 (or A0 ⊆ f(A0)).
Thus, A0 is a fixpoint iff it is a pre-fixpoint and a post-fixpoint. We say that f is monotone
iff A1 ⊆ A2 implies f(A1) ⊆ f(A2) for all A1, A2 ⊆ A.

Theorem 2.1 (Knaster-Tarski fixpoint theorem [21]). Let f : P(A)→ P(A) be a monotone
function. Then f has a unique least fixpoint lfp f and a unique greatest fixpoint gfp f , given
as follows:

lfp f =
⋂
{A0 ⊆ A | f(A0) ⊆ A0} gfp f =

⋃
{A0 ⊆ A | A0 ⊆ f(A0)} (2.3)

In other words, the least fixpoint is also the least pre-fixpoint, and the great fixpoint is also
the greatest post-fixpoint.

Let Λ be a set whose elements are called indices. A Λ-indexed set is denoted byA = {Aλ}λ∈Λ,
where Aλ is a set for each λ ∈ Λ. For simplicity, we often write a ∈ A to mean that a ∈ Aλ
for some λ ∈ Λ. For two Λ-indexed sets A = {Aλ}λ∈Λ and B = {Bλ}λ∈Λ, we write f : A→ B

to denote a Λ-indexed function, where f(a) ∈ Bλ for every λ ∈ Λ and a ∈ Aλ.

Definition 2.1. Given a function f : A→ P(B), we define its pointwise extension

f ext : P(A)→ P(B) (2.4)

by
f ext(A0) =

⋃
a∈A0

f(a) for all A0 ⊆ A (2.5)

5

Note that f ext(∅) = ∅. For any Λ-indexed set {Aλ}λ∈Λ, f ext(
⋃
λ∈ΛAλ) =

⋃
λ∈Λ f

ext(Aλ). In
particular, we have f ext(A1 ∪ · · · ∪ An) = f ext(A1) ∪ · · · ∪ f ext(An) for any A1, . . . , An ⊆ A.

Given sets A1, . . . , An for n ≥ 1, the set A1 × · · · × An is the set of n-tuples, given by
A1 × · · · × An = {(a1, . . . , an) | ai ∈ Ai, 1 ≤ i ≤ n}. Note that the 1-tuples are simply
the elements in A1. The 2-tuples are called pairs. An n-ary relation over A1, . . . , An is a
subset of A1 × · · · × An. When n = 1, we call it a unary relation. When n = 2, we call it a
binary relation. For an n-ary relation R ⊆ A1 × · · · × An, we say that R(a1, . . . , an) holds iff
(a1, . . . , an) ∈ R. The set of all n-ary relations over A1 × · · · × An is P(A1 × · · · × An).

We define
An = A× · · · × A︸ ︷︷ ︸

n

for n ≥ 2 (2.6)

The set of all n-ary relations over An is P(An). The set of all relations over the elements/tuples
of A is

⋃
i≥1P(Ai).

The identity relation over A is denoted by idA and defined by idA = {(a, a) | a ∈ A}. For
relations R1 ⊆ A × B and R2 ⊆ B × C, their composition is a relation R1 ◦ R2 ⊆ A × C,
defined by

R1 ◦R2 = {(a, c) ∈ A× C | there exists b ∈ B such that R1(a, b) holds and R2(b, c) holds}
(2.7)

Since ◦ is associative, we feel free to write R1 ◦ · · · ◦Rn without parentheses.
For a relation R ⊆ A× A, we say that R is

1. reflexive, if R(a, a) holds for all a ∈ A;

2. symmetric, if R(a1, a2) holds implies R(a2, a1) holds for all a1, a2 ∈ A;

3. transitive, if R(a1, a2) holds and R(a2, a3) holds implies R(a1, a3) holds for all a1, a2, a3 ∈
A.

We let Rn = R ◦ · · · ◦R︸ ︷︷ ︸
n

. When n = 1, we let R1 = R. When n = 0, we let R0 = idA. The

transitive closure of R is denoted by R+ and defined by R+ =
⋃
i≥1R

i. The reflexive and
transitive closure of R is denoted by R∗ and defined by R∗ =

⋃
i≥0R

i.

2.2 FIRST-ORDER LOGIC

We review (many-sorted) first-order logic, abbreviated as FOL.

6

Definition 2.2. A FOL signature (S, F,Π) consists of a set S of sorts, an (S∗×S)-indexed set
F = {Fs1...sn,s}s1,...,sn,s∈S of function symbols, and an S+-indexed set Π = {Πs1...sn}s1,...,sn∈S
of predicate symbols.

Definition 2.3. Given a FOL signature (S, F,Π) and an S-indexed set V = {Vs}s∈S of
(many-sorted) variables, denoted by x : s, y : s, etc, the syntax of FOL is given by the following
grammar:

FOL terms ts ::= x : s ∈ Vs (2.8)

| f(ts1 , . . . , tsn) with f ∈ Fs1...sn,s (2.9)

FOL formulas φ ::= π(ts1 , . . . , πsn) with π ∈ Πs1...sn (2.10)

| φ1 ∧ φ2 (2.11)

| ¬φ (2.12)

| ∃x : s . φ (2.13)

We use freeVar(φ) to denote the set of free variables in φ. We write φ[ts/x : s] for the result
of substituting ts for every free occurrences of x : s in φ, where α-renaming happens implicitly
to avoid variable capture.

Definition 2.4. Given a FOL signature (S, F,Π), a FOL (S, F,Π)-model or simply FOL
model is a tuple

M = ({Ms}s∈S, {fM}f∈F , {πM}π∈Π) (2.14)

where

1. Ms is a nonempty carrier set for every s ∈ S;

2. fM : Ms1 × · · · ×Msn →Ms is a function for every f ∈ Fs1...sn,s;

3. πM ⊆Ms1 × · · · ×Msn is a relation for every π ∈ Πs1...sn .

Definition 2.5. Let M be a FOL model. A FOL M-valuation or simply FOL valuation
ρ : V → M is a function such that ρ(x : s) ∈ Ms for every s ∈ S and x : s ∈ Vs. The term
extension of ρ is a function ρ̄ from the set of FOL terms to M , defined by

1. ρ̄(x : s) = ρ(x : s);

2. ρ̄(f(ts1 , . . . , tsn)) = fM(ρ̄(ts1), . . . , ρ̄(tsn)).

Note that ρ̄(ts) ∈Ms for every FOL term ts whose sort is s.

7

(Propositional Tautology) φ, if φ is a propositional tautology

(Modus Ponens)
φ1 φ1 → φ2

φ2

(Term Substitution) φ[ts/x : s]→ ∃x : s . φ

(∃-Generalization)
φ1 → φ2 if x : s ̸∈ freeVar(φ2)

(∃x : s . φ1)→ φ2

Figure 2.1: Sound and Complete Proof System of FOL

Definition 2.6. Let M be a FOL model. The FOL satisfaction relation M,ρ ⊨FOL φ is
defined for all ρ as follows:

1. M,ρ ⊨FOL π(ts1 , . . . , tsn) iff πM(ρ̄(ts1), . . . , ρ̄(tsn)) holds;

2. M,ρ ⊨FOL φ1 ∧ φ2 iff M,ρ ⊨FOL φ1 and M,ρ ⊨FOL φ2;

3. M,ρ ⊨FOL ¬φ iff M,ρ ̸⊨FOL φ;

4. M,ρ ⊨FOL ∃x : s . φ iff there exists a ∈Ms such that M,ρ[a/x : s] ⊨FOL φ.

We write M ⊨FOL φ iff M,ρ ⊨FOL φ for all ρ. A FOL theory Γ is a set of FOL formulas/axioms.
We write M ⊨FOL Γ iff M ⊨FOL ψ for all ψ ∈ Γ. We write Γ ⊨FOL φ iff M ⊨FOL Γ implies
M ⊨FOL φ for all M .

FOL has a sound and complete Hilbert-style proof system as shown in Figure 2.1. The
corresponding provability relation is denoted by Γ ⊢FOL φ.

Theorem 2.2 ([22]). For any FOL theory Γ and formula φ, Γ ⊨FOL φ iff Γ ⊢FOL φ.

2.3 FIRST-ORDER LOGIC WITH LEAST FIXPOINTS

We review first-order logic with least fixpoints, abbreviated as LFP. LFP is an extension
of FOL with predicate variables and an operator lfp that builds least fixpoints.

Definition 2.7. An LFP signature (S, F,Π) is the same as a FOL signature.

Definition 2.8. Given an LFP signature (S, F,Π), an S-indexed set EV = {EV s}s∈S of
element variables, and an S+-indexed set PV = {PV s1...sn}s1,...,sn∈S of predicate variables,
the syntax of LFP extends the syntax of FOL with the following grammar rules:

LFP formulas φ ::= (syntax of FOL formulas) (2.15)

8

| P (ts1 , . . . , tsn) with P ∈ PV s1...,sn (2.16)

| [lfpP,x1 : s1...,xn : snφ](ts1 , . . . , tsn) with P ∈ PV s1...,sn (2.17)

where [lfpP,x1 : s1...,xn : snφ](ts1 , . . . , tsn) requires that φ is positive in P , that is, every sub-
formula of φ that has form P (t′s1 , . . . , t

′
sn) must occur under an even number of negations.

LFP terms are the same as FOL terms defined in Definition 2.3.

Definition 2.9. An LFP model M is the same as a FOL model. An LFP M-valuation or
simply an LFP valuation ρ = (ρEV , ρPV) is a pair, where ρEV : V → M and ρPV : PV →
{P(Ms1 × · · · ×Msn)}s1,...,sn∈S. That is, ρPV (P) is an n-ary relation over Ms1 , . . . ,Msn , for
P ∈ PV s1...sn . Let ρEV be the term extension of ρEV in Definition 2.5. The LFP satisfaction
relation M,ρ ⊨LFP φ is defined for all ρ by extending the FOL satisfaction relation with two
additional rules:

1. M,ρ ⊨LFP P (ts1 , . . . , tsn) iff ρPV (P)(ρEV (ts1), . . . , ρEV (tsn)) holds;

2. M,ρ ⊨LFP [lfpP,x1 : s1...,xn : snφ](ts1 , . . . , tsn) iff (ρEV (ts1), . . . , ρEV (tsn)) ∈
⋂
{R ⊆ Ms1 ×

· · · ×Msn | for all ai ∈Msi , 1 ≤ i ≤ n, M, ρ[R/P, a1/x1 : s1, . . . , an/xn : sn] ⊨LFP φ im-
plies (a1, . . . , an) ∈ R}.

We write M ⊨LFP φ iff M,ρ ⊨LFP φ for all ρ and all the predicate variables of φ are bound by
lfp. We write ⊨LFP φ iff M ⊨LFP φ for all M .

Our presentation of LFP is slightly different from the classical presentation. The clas-
sical presentation enforces all the predicate variables in an LFP formula to be bound by
lfp. The semantics of predicate variables, which are needed for defining the semantics of
[lfpR,x1 : s1...,xn : snφ], are given by a model of an extended signature, where all the predicate
variables are added as predicate symbols and interpreted as relations. In our presentation,
we do not extend the signature nor the model. Instead, we extend the valuation with ρPV ,
which maps predicate variables to relations. This modified yet equivalent presentation of
LFP fits better in Section 5.2, where we will define LFP in matching µ-logic.

2.4 SECOND-ORDER LOGIC

We review (many-sorted) second-order logic, abbreviated as SOL.

Definition 2.10. A SOL signature (S,C,Π) consists of a set S of sorts, an S-indexed set C
of constant symbols that are function symbols of arity 0, and an S∗-indexed set Π of predicate
symbols.

9

Definition 2.11. Given a SOL signature (S,C,Π), an S-indexed set EV = {EV s}s∈S of
element variables, and an S+-indexed set PV = {PV s1...sn}s1,...,sn∈S of predicate variables,
the syntax of SOL is given by the following grammar:

SOL terms ts ::= x : s ∈ EV s (2.18)

| c ∈ Cs (2.19)

SOL formulas φ ::= ts = t′s (2.20)

| π(ts1 , . . . , tsn) with π ∈ Πs1...sn (2.21)

| P (ts1 , . . . , tsn) with P ∈ PV s1...sn (2.22)

| φ1 ∧ φ2 (2.23)

| ¬φ (2.24)

| ∃x : s . φ (2.25)

| ∃P . φ with P ∈ PV s1...sn (2.26)

Here, we include equality ts = t′s mainly for convenience. We could remove it from the
syntax and define equality using Leibniz’s principle (i.e., two entities are equal if any property
of one is a property of the other) by

ts = t′s ≡ ∀P . (P (ts)↔ P (t′s)) (2.27)

Definition 2.12. Given a SOL signature (S,C,Π), a SOL (S,C,Π)-model or simply SOL
model M = ({Ms}s∈S, {cM}c∈C , {πM}π∈Π) is a tuple, where

1. Ms is a carrier set for every s ∈ S;

2. cM ∈Ms for every c ∈ Cs;

3. πM ⊆Ms1 × · · · ×Msn for every π ∈ Πs1...sn .

Definition 2.13. Given a SOL model M , a SOL M-valuation or simply SOL valuation
ρ = (ρEV , ρPV) is the same as Definition 2.9. The SOL satisfaction relation M,ρ ⊨SOL φ is
defined for all ρ by the following rules:

1. M,ρ ⊨SOL ts = t′s iff ρEV (ts) = ρEV (t
′
s);

2. M,ρ ⊨SOL π(ts1 , . . . , tsn) iff πM(ρEV (ts1), . . . , ρEV (tsn)) holds;

3. M,ρ ⊨SOL P (ts1 , . . . , tsn) iff ρPV (P)(ρEV (ts1), . . . , ρEV (tsn)) holds;

10

4. M,ρ ⊨SOL φ1 ∧ φ2 iff M,ρ ⊨SOL φ1 and M,ρ ⊨SOL φ2;

5. M,ρ ⊨SOL ¬φ iff M,ρ ̸⊨SOL φ;

6. M,ρ ⊨SOL ∃x : s . φ iff there exists a ∈Ms such that M,ρ[a/x : s] ⊨SOL φ;

7. M,ρ ⊨SOL ∃P . φ iff there exists R ⊆ Ms1 × · · · ×Msn such that M,ρ[R/P] ⊨SOL φ,
where P ∈ PV s1...sn .

We write M ⊨SOL φ iff M,ρ ⊨SOL φ for all ρ. A SOL theory Γ is a set of SOL formulas/axioms.
We write M ⊨SOL Γ iff M ⊨SOL ψ for all ψ ∈ Γ. We write Γ ⊨SOL φ iff M ⊨SOL Γ implies
M ⊨SOL φ for all M .

Monadic SOL, abbreviated as MSO, is an instance of SOL where all predicate variables
are unary, i.e., taking only one argument.

2.5 EQUATIONAL SPECIFICATIONS AND INITIAL ALGEBRA SEMANTICS

Equational specifications (also known as algebraic specifications) and initial algebra se-
mantics provide a generic and principled framework to study induction. We review the main
definitions and notation about them following the standard many-sorted approach [23, 24].

Definition 2.14. Given a many-sorted signature (S, F), an (S, F)-algebra or simply F -algebra
A = ({As}s∈S, {fA}f∈F) is a pair, where

1. As is a carrier set for every s ∈ S;

2. fA : : As1 × · · · × Asn → As is a function for every f ∈ Fs1...sn,s.

Given an S-indexed set V = {Vs}s∈S of variables, the syntax of (S,F)-terms or simply F -terms
is the same as Definition 2.3. Let TF (V) = {TF,s(V)}s∈S be an S-indexed set of terms with
variables in V . The set TF (∅) = {TF,s(∅)}s∈S includes all the ground terms, i.e., terms with
no variables. We often abbreviate TF (∅) as TF and TF,s(∅) as TF,s. An A-valuation ρ : V → A

and its term extension ρ̄ are the same as Definition 2.5. When V = ∅, there is a unique
trivial valuation ∅ : ∅ → A. We define evalA(t) = ∅̄(t) for t ∈ TF and feel free to drop the
subscript A when it is understood or not important.

Definition 2.15. Given a many-sorted signature (S, F), an (S, F)-equation or simply F -
equation is written ∀V . ts = t′s, where V is finite and ts, t′s ∈ TF,s(V). A ground (S, F)-equation
or simply ground F -equation ∀∅ . ts = t′s is when V = ∅ and ts, t′s ∈ TF,s.

11

(Axiom) ∀V . ts = t′s if (∀V . ts = t′s) ∈ E

(Reflexivity) ∀V . ts = ts

(Symmetry)
∀V . ts = t′s

∀V . t′s = ts

(Transitivity)
∀V . ts = t′s ∀V . t′s = t′′s

∀V . ts = t′′s

(Congruence)

∀V . ts1 = t′s1 . . . ∀V . tsn = t′sn

∀V . f(ts1 , . . . , tsn) = f(t′s1 , . . . , t
′
sn)

(Substitution)
∀V . ts = t′s with substitution θ : V → TF (U)∀U . tsθ = t′sθ

Figure 2.2: Sound and Complete Proof Rules for Equational Deduction

Definition 2.16. Given an (S, F)-algebra A and an (S, F)-equation ∀V . t = t′, we write
A ⊨EQ ∀V . t = t′ iff ρ̄(t) = ρ̄(t′) for all A-valuations ρ. An equational specification (S, F,E)

consists of a many-sorted signature (S, F) and a set E of (S, F)-equations. We often
abbreviate (S, F,E) as (F,E) or simply E. We write A ⊨EQ E iff A ⊨EQ e for all e ∈ E, and
we call A an (S, F,E)-algebra or simply (F,E)-algebra or E-algebra. We write E ⊨EQ e iff
A ⊨EQ e for all E-algebras A.

Next, we review rules of equational deduction for many-sorted algebras. There are many
equivalent definitions of equational deduction in the literature. We present one standard
definition in Figure 2.2 and denote the corresponding provability relation by E ⊢EQ e. In
Figure 2.2, tsθ denotes the result of applying θ to ts, i.e., tsθ = ts[θ(x1)/x1, . . . , θ(xn)/xn]

with freeVar(ts) = {x1, . . . , xn}.

Theorem 2.3. For any equational specification E and equation e, we have E ⊢EQ e iff
E ⊨EQ e.

Definition 2.17. Let A be an (S, F)-algebra. A congruence on A is an S-indexed set
R = {Rs}s∈S of equivalence relations Rs ⊆ As×As for s ∈ S, such that Rsi(ai, bi) holds for all
1 ≤ i ≤ n implies Rs (fA(a1, . . . , an), fA(b1, . . . , bn)) holds, for all f ∈ Fs1...sn,s and ai, bi ∈ Asi ,
1 ≤ i ≤ n. The R-quotient algebra of A is an (S, F)-algebra A/R = ({A/R,s}s∈S, {fA/R}f∈F),
where

1. A/R,s = {[a]R | a ∈ As} for every s ∈ S; here, [a]R = {b ∈ As | Rs(a, b) holds} is the
R-equivalence class of a;

12

2. fA/R : A/R,s1 × · · · × A/R,sn → A/R,s is a function defined by fA/R([a1]R, . . . , [an]R) =

[fA(a1, . . . , an)]R for all [ai]R ∈ A/R,si , 1 ≤ i ≤ n, for every f ∈ Fs1...sn,s.

Note that fA/R is well-defined because R is a congruence.

Definition 2.18. Given a many-sorted signature (S, F), an (S, F)-term algebra or simply
F -term algebra TF = ({TF,s}s∈S, {fTF }f∈F) is an F -algebra, where

1. TF,s is the set of ground terms of sort s, for every s ∈ S;

2. fTF : TF,s1 × · · · × TF,sn → TF,s is defined by fTF (ts1 , . . . , tsn) = f(ts1 , . . . , tsn) for all
tsi ∈ TF,si , 1 ≤ i ≤ n, for every f ∈ Fs1...sn,s.

Equational deduction generates a congruence on TF .

Proposition 2.1. Let E be an equational specification. Define a relation ≃E,s ⊆ TF,s × TF,s
such that ts ≃E,s t′s iff E ⊢EQ ∀∅ . ts = t′s, for all ts, t′s ∈ TF,s. Then, ≃E = {≃E,s}s∈S is a
congruence on TF .

We use [ts]≃E , or simply [ts]E or [ts], to denote the set of terms that are provably equal to
t. We abbreviate ts ≃E,s t′s as ts ≃E t′s or ts ≃ t′s.

Definition 2.19. Given an equational specification (S, F,E), the (S, F,E)-quotient term
algebra or simply (F,E)-quotient term algebra or E-quotient term algebra, written TF/E, is
the ≃E-quotient algebra of TF . Specifically, TF/E = ({TF/E,s}s∈S, {fTF/E}f∈F), where

1. TF/E,s = {[ts]E | ts ∈ TF,s} for every s ∈ S;

2. fTF/E : TF/E,s1 × · · · × TF/E,sn → TF/E,s is a function defined by fTF/E([ts1], . . . , [tsn]) =
[f(ts1 , . . . , tsn)] for all [tsi] ∈ TF/E,si , 1 ≤ i ≤ n, for every f ∈ Fs1...sn,s.

Term algebras and quotient term algebras are the concrete examples of initial algebras,
which are initial objects in the category of algebras. We first review the definition of algebra
morphisms.

Definition 2.20. For (S, F)-algebras A and B, an (algebra) morphism is a function h : A→ B

such that h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) for all f ∈ Fs1...sn,s and ai ∈ Asi , 1 ≤ i ≤ n.
If h is a morphism and its inverse h−1 : B → A exists, then h is an isomorphism and A and
B are isomorphic.

Definition 2.21. Given an equational specification (S, F,E), an initial (S, F,E)-algebra or
simply initial (F,E)-algebra or initial E-algebra, is an (S, F)-algebra I such that for every
(F,E)-algebra A, there exists a unique morphism hA : I → A. An initial (S, F, ∅)-algebra is
called an initial (S, F)-algebra or simply initial F -algebra.

13

Theorem 2.4. Any two initial (F,E)-algebras are isomorphic. In particular, TF is an initial
F -algebra and TF/E is an initial (F,E)-algebra.

An equational specification states the existence of some data, operations, and equational
properties. Its initial algebras are the minimal realization of the specification, in the sense
that all of its elements are representable by terms and all the (equational) properties are
derivable from E. An equivalent characterization of initiality is the famous “no junk, no
confusion” slogan, firstly proposed in [25].

Theorem 2.5. Let A be an (S, F,E)-algebra. We define no-confusion and no-junk as follows:

1. A satisfies no-confusion, iff A ⊨EQ ∀∅ . ts = t′s implies E ⊢EQ ∀∅ . ts = t′s for all
ts, t

′
s ∈ TF,s.

2. A satisfies no-junk, iff for any a ∈ As there exists ta ∈ TF,s such that evalA(ta) = a.

Then, A is an initial (S, F,E)-algebra iff it satisfies no-junk and no-confusion.

Therefore, A satisfies no-confusion iff for any ts, t′s ∈ TF,s that have the same semantics in A,
we have E ⊢EQ ∀∅ . ts = t′s, which implies that E ⊨EQ ∀∅ . ts = t′s (Theorem 2.3). That is, if
ts and t′s have the same semantics in A, then they have the same semantics in all E-algebras.
On the other hand, if A satisfies no-junk, then every element in A is representable by a
ground term.

2.6 SEPARATION LOGIC

Separation logic [26], abbreviated as SL, is a logic specifically crafted for reasoning about
heap structures. SL has many variants; the formalization that we consider here is adapted
from [27]. The most characteristic construct in SL is separating conjunction φ1 ∗ φ2, which
specifies a conjunctive heap of two disjoint heaps. In addition, SL has the model of heaps
(i.e., finite-domain maps) hard-wired in its semantics, which makes it a logic specifically
crafted for heap reasoning.

Definition 2.22. Let V be a set of variables and RSymb be a finite set of recursive symbols.
For each P ∈ RSymb we use arity(P) ≥ 1 to denote its arity. The syntax of SL is given by
the following grammar:

SL terms t ::= x ∈ V (2.28)

| nil (2.29)

14

SL formulas: φ ::= (syntax of FOL formulas) (2.30)

| emp // the empty heap (2.31)

| t1 7→ t2 // singleton heaps (2.32)

| φ1 ∗ φ2 // separating conjunction (2.33)

| φ1 −∗ φ2 // separating implication (the “magic wand”) (2.34)

| P (t1, . . . , tn) with P ∈ RSymb and arity(p) = n (2.35)

A recursive symbol definition D is a set that has the following form:

D = {P (x1, . . . , xn) =lfp ψP | P ∈ RSymb and arity(P) = n} (2.36)

where freeVar(ψP) ⊆ {x1, . . . , xn} and ψP is positive in P , the same as LFP (Definition 2.8).
In this work, we do not consider mutually recursive symbols, so we require that P is the only
recursive predicate symbol in ψP .

Intuitively, a heap (fragment) satisfies φ1 ∗ φ2 iff it can be separated into two disjoint
sub-heaps such that one satisfies φ1 and the other satisfies φ2. Separating implication φ1−∗φ2,
also known as the magic wand, behaves like an inverse of separating conjunction. A heap h
satisfies φ1 −∗ φ2 iff for any h′ that satisfies φ1, the disjoint union of h and h′ satisfies φ2.
We will formally define the semantics of SL in Definition 2.24.

Many heap structures, especially those featuring induction, can be defined using recursive
symbol definitions. For example, singly-linked lists can be defined by a recursive symbol list
and the following recursive symbol definition:

list(x) =lfp ((x = nil) ∧ emp) ∨ (∃y . (x ̸= nil) ∧ x 7→ y ∗ list(y)) (2.37)

Intuitively, if x = nil then list(nil) specifies the empty heap emp. Otherwise, there exists y
such that x points to y (i.e., x 7→ y), and in a separate heap segment there is a singly-linked
list starting at y.

Definition 2.23. A heap is a partial function h : N+ ⇀fin N. The set of all heaps is denoted by
H = [N+ ⇀fin N]. For heaps h1 and h2, their disjoint union is denoted by h1 ∪̇h2 (Section 2.1).
A store is a function s : V → N. Its term extension s̄ : V ∪ {nil} → N is given by s̄(x) = s(x)

for all x ∈ V and s̄(nil) = 0.

Definition 2.24. Given a set of recursive symbols RSymb and a recursive symbol definition
D in Definition 2.22, the SL satisfaction relation s, h ⊨SL φ is defined for all heaps h and stores

15

s by extending the FOL satisfaction relation (Definition 2.6) with the following additional
rules:

1. s, h ⊨SL emp iff domain(h) = ∅;

2. s, h ⊨SL t1 7→ t2 iff s̄(t1) ̸= 0, domain(h) = {s̄(t1)}, and h(s̄(t1)) = s̄(t2);

3. s, h ⊨SL φ1 ∗φ2 iff there exist h1, h2 such that s, h1 ⊨SL φ1, s, h2 ⊨SL φ2, and h = h1 ∪̇h2;

4. s, h ⊨SL φ1 −∗ φ2 iff for all h′ such that h, h′ are disjoint and s, h′ ⊨SL φ1, we have
s, h ∪̇ h′ ⊨SL φ2;

5. s, h ⊨SL P (t1, . . . , tn) iff (s̄(t1), . . . , s̄(tn), h) ∈ |P |SL, for P ∈ RSymb and arity(P) = n,

where |P |SL is given as follows. Define a function FP : P(Nn × H)→ P(Nn × H) by letting

FP (R) = {(s̄(x1), . . . , s̄(xn), h) | s, h ⊨SL,P ψP} for R ⊆ Nn × H (2.38)

where ψP is given by D and ⊨SL,P is the same as ⊨SL except that |P |SL = R. Since ψP is
positive in P , FP is monotone and its unique least fixpoint lfpFp is given by Theorem 2.1.
We let |P |SL = lfpFP . Given a SL formula φ, we write ⊨SL φ iff s, h ⊨SL φ for all s and h.

2.7 MODAL LOGIC K

Modal logic is a big family of logics, with many variants and extensions. The formalization
we consider here is called modal logic K with multiple modalities. We should not confuse
modal logic K with the K formal semantics framework (Section 2.15). We will always use the
blackboard bold letter K to refer to the latter.

Definition 2.25. Let AP be a set of atomic propositions, also known as propositional
variables in the literature. Let L be a set of labels. The syntax of modal logic is given by the
following grammar:

modal logic K formulas φ ::= p ∈ AP (2.39)

| φ1 ∧ φ2 (2.40)

| ¬φ (2.41)

| [a]φ with a ∈ L (2.42)

For each a ∈ L the dual of [a] is the modal operator ⟨a⟩, given by ⟨a⟩φ ≡ ¬[a]¬φ.

16

(Propositional Tautology) φ, if φ is a propositional tautology

(Modus Ponens)
φ1 φ1 → φ2

φ2

(K) [a](φ1 → φ2)→ ([a]φ1 → [a]φ2)

(N)
φ

[a]φ

Figure 2.3: Sound and Complete Proof System of Modal Logic K

Definition 2.26. Given a label set L, an L-labeled transition system or simply labeled
transition system is a tuple T = (S, { a−−→}a∈L), where S is a set of states and a−−→ ⊆ S × S is
a binary relation, called a transition relation, for every a ∈ L. We write s1

a−−→ s2 to mean
that (

a−−→)(s1, s2) holds, for s1, s2 ∈ S.

Definition 2.27. Given a label set L and an L-labeled transition system T = (S, { a−−→}a∈L),
a T -valuation is a function ρ : AP → P(S). The modal logic satisfaction relation T, ρ, s ⊨K φ

is defined for all ρ and s ∈ S as follows:

1. T, ρ, s ⊨K p iff s ∈ ρ(p);

2. T, ρ, s ⊨K φ1 ∧ φ2 iff T, ρ, s ⊨K φ1 and T, ρ, s ⊨K φ2;

3. T, ρ, s ⊨K ¬φ iff T, ρ, s ̸⊨K φ;

4. T, ρ, s ⊨K [a]φ iff for all s′ ∈ S, s a−−→ s′ implies T, ρ, s′ ⊨K φ.

The derived semantics for ⟨a⟩φ is

T, ρ, s ⊨K ⟨a⟩φ iff there exists s′ ∈ S such that s a−−→ s′ and T, ρ, s′ ⊨K φ (2.43)

We write T, ρ ⊨K φ iff T, ρ, s ⊨K φ for all s ∈ S. We write T ⊨K φ iff T, ρ ⊨K φ for all ρ. We
write ⊨K φ iff T ⊨K φ for all T .

Modal logic K has a sound and complete proof system as shown in Figure 2.3. In
the literature, (K) is also known as the distribution axiom and (N) is also known as the
necessitation rule. We use ⊢K φ to denote the corresponding provability relation.

Theorem 2.6 ([28]). For any modal logic formula φ, ⊨K φ iff ⊢K φ.

17

2.8 MODAL µ-CALCULUS

Modal µ-calculus [29] is an extension of modal logic K with fixpoints.

Definition 2.28. The syntax of modal µ-calculus extends the syntax of modal logic K with
an additional grammar rule:

modal µ-calculus formulas φ ::= (syntax of modal logic K) (2.44)

| µX .φ if φ is positive in X (2.45)

where X ∈ AP is also an atomic proposition. Following the convention, we use p for free
atomic propositions and X when they are bound by µ.

The operator µ is the least fixpoint operator. Its dual is the greatest fixpoint operator ν,
given by νX . φ ≡ ¬µX .¬φ[¬X/X].

Definition 2.29. The modal µ-calculus satisfaction relation T, ρ, s ⊨Lµ φ extends the modal
logic satisfaction relation ⊨K by adding a rule for µ. Firstly, we introduce the notation

|φ|LµT,ρ = {s ∈ S | T, ρ, s ⊨Lµ φ} (2.46)

Note that it is now sufficient to define |φ|LµT,ρ for all φ, in order to define the satisfaction
relation ⊨K. Then, we add the following rule for µ:

|µX.φ|LµT,ρ =
⋂
{A ⊆ S | |φ|LµT,ρ[A/X] ⊆ A} (2.47)

The derived rule for ν is

|νX. φ|LµT,ρ =
⋃
{A ⊆ S | A ⊆ |φ|LµT,ρ[A/X]} (2.48)

We write ⊨Lµ φ iff |φ|LµT,ρ = S for all T and ρ, that is, T, ρ, s ⊨Lµ φ for all T , ρ, and s.

Modal µ-calculus has a sound and complete proof system, as shown in Figure 2.4. We use
⊢Lµ φ to denote the corresponding provability relation.

Theorem 2.7 ([30]). For any modal µ-calculus formula φ, ⊨Lµ φ iff ⊢Lµ φ.

2.9 TEMPORAL LOGICS

We review infinite-trace linear temporal logic (infinite-trace LTL) [31], finite-trace linear
temporal logic (finite-trace LTL) [32], and computation tree logic (CTL) [33].

18

(Modal Logic K) all proof rules in Figure 2.3

(Pre-Fixpoint) φ[µX .φ/X]→ µX.φ

(Knaster Tarski)
φ[ψ/X]→ ψ

µX.φ→ ψ

Figure 2.4: Sound and Complete Proof System of Modal µ-Calculus

2.9.1 Infinite-trace LTL

Definition 2.30. Let AP be a set of atomic propositions. The syntax of infinite-trace LTL
is given by the following grammar:

infinite-trace LTL formulas φ ::= p ∈ AP (2.49)

| φ1 ∧ φ2 (2.50)

| ¬φ (2.51)

| ◦φ // “next φ” (2.52)

| φ1 U φ2 // “φ1 until φ2” (2.53)

The other modal operators such as ⋄φ (“eventually φ”) and □φ (“always φ”) can be defined
as follows:

⋄ φ ≡ ⊤ U φ □φ ≡ ¬ ⋄ ¬φ (2.54)

where ⊤ is a formula that always holds, which can be defined by ⊤ ≡ p ∨ ¬p.
The models of infinite-trace LTL are infinite traces over P(AP). We use α = α0α1α2 . . .

to denote an infinite trace, where αi ⊆ AP for every i ≥ 0. We use α≥i to denote the suffix
trace αiαi+1αi+2

Definition 2.31. The infinite-trace LTL satisfaction relation α ⊨infLTL φ is defined as follows:

1. α ⊨infLTL p iff p ∈ α0;

2. α ⊨infLTL φ1 ∧ φ2 iff α ⊨infLTL φ1 and α ⊨ φ2;

3. α ⊨infLTL ¬φ iff α ̸⊨infLTL φ;

4. α ⊨infLTL ◦φ iff α≥1 ⊨infLTL φ;

19

(Propositional Tautology) φ, if φ is a propositional tautology

(Modus Ponens)
φ1 φ1 → φ2

φ2

(K�) ◦(φ1 → φ2)→ (◦φ1 → ◦φ2)

(N�)
φ

◦φ

(K□) □(φ1 → φ2)→ (□φ1 → □φ2)

(N□)
φ

□φ

(Fun) ◦φ↔ ¬(◦¬φ)

(U1) (φ1 U φ2)→ ⋄φ2

(U2) (φ1 U φ2)↔ (φ2 ∨ (φ1 ∧ ◦(φ1 U φ2)))

(ind) □(φ→ ◦φ)→ (φ→ □φ)

Figure 2.5: Sound and Complete Proof System of Infinite-Trace LTL

5. α ⊨infLTL φ1 U φ2 iff there exists j ≥ 0 such that α≥j ⊨infLTL φ2 and for every i < j,
α≥i ⊨infLTL φ1.

We write ⊨infLTL φ to mean α ⊨infLTL φ for all α.

Infinite-trace LTL has a sound and complete proof system, as shown in Figure 2.5. We use
⊢infLTL φ to denote the corresponding provability relation.

Theorem 2.8 (See [32]). For any infinite-trace LTL formula φ, ⊨infLTL φ iff ⊢infLTL φ.

2.9.2 Finite-trace LTL

Finite execution traces play an important role in program verification and monitoring.
Unlike infinite-trace LTL, finite-trace LTL use finite traces as its models.

Definition 2.32. Let AP be a set of atomic propositions. The syntax of finite-trace LTL is
given by the following grammar:

finite-trace LTL formulas φ ::= p ∈ AP (2.55)

20

| φ1 ∧ φ2 (2.56)

| ¬φ (2.57)

| ◦φ // “next φ” (2.58)

| φ1 W φ2 // “φ1 weak-until φ2” (2.59)

Note that φ1 W φ2 only requires that φ1 remains true until φ2 becomes true, but it does
not require that φ2 eventually becomes true. Therefore, it is possible that φ2 remains false
until the end of the trace.

Definition 2.33. The finite-trace LTL satisfaction relation α0 . . . αn ⊨finLTL φ with n ≥ 0 is
defined as follows:

1. α0 . . . αn ⊨finLTL p iff p ∈ α0;

2. α0 . . . αn ⊨finLTL φ1 ∧ φ2 iff α0 . . . αn ⊨finLTL φ1 and α0 . . . αn ⊨ φ2;

3. α0 . . . αn ⊨finLTL ¬φ iff α0 . . . αn ̸⊨finLTL φ;

4. α0 . . . αn ⊨finLTL ◦φ iff n = 0 or α1 . . . αn ⊨finLTL φ;

5. α0 . . . αn ⊨finLTL φ1 W φ2 iff one of the following holds:

(a) for every i ≤ n, αi . . . αn ⊨finLTL φ1;

(b) there is j ≤ n such that αj . . . αn ⊨finLTL φ2 and for every i < j, αi . . . αn ⊨finLTL φ1.

We write ⊨finLTL φ to mean that α0 . . . αn ⊨finLTL φ for all n and α0 . . . αn. Note that ◦φ holds
when we reach the end of any execution trace, as defined in (4).

Finite-trace LTL has a sound and complete proof system, as shown in Figure 2.6. We use
⊢finLTL φ to denote its provability relation.

Theorem 2.9 ([32]). For any finite-trace LTL formula φ, ⊨finLTL φ iff ⊢finLTL φ.

2.9.3 CTL

CTL is a branching-time logic whose time model has a tree-like structure.

Definition 2.34. Let AP be a set of atomic propositions. The syntax of CTL is given by
the following grammar:

CTL formulas φ ::= p ∈ AP (2.60)

21

(Propositional Tautology) φ, if φ is a propositional tautology

(Modus Ponens)
φ1 φ1 → φ2

φ2

(K�) ◦(φ1 → φ2)→ (◦φ1 → ◦φ2)

(N�)
φ

◦φ

(K□) □(φ1 → φ2)→ (□φ1 → □φ2)

(N□)
φ

□φ

(¬�) ¬◦φ→ ◦¬φ

(coind)
◦φ→ φ

φ

(fix) (φ1 W φ2)↔ (φ2 ∨ (φ1 ∧ ◦(φ1 W φ2)))

Figure 2.6: Sound and Complete Proof System of Finite-Trace LTL

| φ1 ∧ φ2 (2.61)

| ¬φ (2.62)

| AXφ // “on all paths, next φ” (2.63)

| EXφ // “on (at least) one path, next φ” (2.64)

| φ1 AU φ2 // “on all paths, φ1 until φ2” (2.65)

| φ1 EU φ2 // “on (at least) one path, φ1 until φ2” (2.66)

Other modal operators can be defined as follows:

EFφ ≡ ⊤ EU φ // “on (at least) one path, eventually φ” (2.67)

AFφ ≡ ⊤ AU φ // “on all paths, eventually φ” (2.68)

AGφ ≡ ¬EF¬φ // “on all paths, always φ” (2.69)

EGφ ≡ ¬AF¬φ // “on (at least) one path, always φ” (2.70)

As we can see, every CTL operator consists of a path quantifier (A or E) and a trace quantifier
(X, U, F, or G). The path quantifiers specify whether a property should hold on all paths (A)

22

or one path (E). The trace quantifiers have the same meaning as their infinite-trace LTL
counterparts, where X is “next”, U is “until”, F is “eventually”, and G is “always”.

CTL models are infinite trees over P(AP). Given an infinite tree τ , we use root(τ) ⊆ AP

to denote its root and τ →subtree τ
′ to indicate that τ ′ is an immediate sub-tree of τ .

Definition 2.35. The CTL satisfaction relation τ ⊨CTL φ is defined as follows:

1. τ ⊨CTL p iff p ∈ root(τ);

2. τ ⊨CTL φ1 ∧ φ2 iff τ ⊨CTL φ1 and τ ⊨CTL φ2;

3. τ ⊨CTL ¬φ iff τ ̸⊨CTL φ;

4. τ ⊨CTL AXφ iff for all τ ′ such that τ →subtree τ
′, τ ′ ⊨CTL φ;

5. τ ⊨CTL EXφ iff there exists τ ′ such that τ →subtree τ
′ and τ ′ ⊨CTL φ;

6. τ ⊨CTL φ1AUφ2 if for all τ0, τ1, . . . such that τ = τ0 →subtree τ1 →subtree . . . , there exists
i ≥ 0 such that τi ⊨CTL φ2 and for all j < i, τj ⊨CTL φ1;

7. τ ⊨CTL φ1 EU φ2 iff there exists τ0, τ1, . . . such that τ = τ0 →subtree τ1 →subtree . . . , and
there exists i ≥ 0 such that τi ⊨CTL φ2 and for all j < i, τj ⊨CTL φ1.

We write ⊨CTL φ iff τ ⊨CTL φ for all τ .

CTL has a sound and complete proof system, as shown in Figure 2.7. We use ⊢CTL φ to
denote the corresponding provability relation.

Theorem 2.10 ([33]). For any CTL formula φ, ⊨CTL φ iff ⊢CTL φ.

2.10 DYNAMIC LOGIC

Dynamic logic, abbreviated as DL, is a common logic for program reasoning [14, 34, 35, 36].

Definition 2.36. Let AP be a set of atomic propositions and APgm be a set of atomic
programs. The syntax of DL is given by the following grammar:

DL formulas φ ::= p ∈ AP (2.71)

| φ1 ∧ φ2 (2.72)

| ¬φ (2.73)

| [α]φ (2.74)

23

(Propositional Tautology) φ, if φ is a propositional tautology

(Modus Ponens)
φ1 φ1 → φ2

φ2

(CTL1) EX(φ1 ∨ φ2)↔ EXφ1 ∨ EXφ2

(CTL2) AXφ↔ ¬(EX¬φ)

(CTL3) φ1 EU φ2 ↔ φ2 ∨ (φ1 ∧ EX(φ1 EU φ2))

(CTL4) φ1 AU φ2 ↔ φ2 ∨ (φ1 ∧ AX(φ1 AU φ2))

(CTL5) EX⊤ ∧ AX⊤

(CTL6) AG(φ3 → (¬φ2 ∧ EXφ3))→ (φ3 → ¬(φ1 AU φ2))

(CTL7) AG(φ3 → (¬φ2 ∧ (φ1 → AXφ3)))→ (φ3 → ¬(φ1 EU φ2))

(CTL8) AG(φ1 → φ2)→ (EXφ1 → EXφ2)

Figure 2.7: Sound and Complete Proof System of CTL

DL programs α ::= a ∈ APgm (2.75)

| α1 ; α2 // sequence (2.76)

| α1 ∪ α2 // choice (2.77)

| α∗ // iteration (2.78)

| φ? // test (2.79)

The dual of [α] is ⟨α⟩, given by ⟨α⟩φ ≡ ¬[α](¬φ). Other program constructs such as
if-then-else, while-do, etc., can be defined as derived constructs [34, 35, 36].

Definition 2.37. Given an atomic program set APgm, a DL model is a tuple T = (S, { a−−→
}a∈APgm) where S is a set of states and a−−→ ⊆ S × S is a transition relation for every
a ∈ APgm. A DL T -valuation is a function ρ : AP → P(S). The DL satisfaction relation
T, ρ, s ⊨DL φ is defined as follows. Firstly, we introduce the notation

|φ|DL
T,ρ = {s ∈ S | T, ρ, s ⊨DL φ} (2.80)

Then, we define |φ|DL
T,ρ ⊆ S and |α|DL

T,ρ ⊆ S × S for all φ, α, and ρ using the following rules:

24

1. |p|DL
T,ρ = ρ(p) for p ∈ AP ;

2. |φ1 ∧ φ2|DL
T,ρ = |φ1|DL

T,ρ ∩ |φ2|DL
T,ρ;

3. |¬φ|DL
T,ρ = S \ |φ|DL

T,ρ;

4. |[α]φ|DL
T,ρ = {s ∈ S | for all t ∈ S, (s, t) ∈ |α|DL

T,ρ implies t ∈ |φ|DL
T,ρ};

5. |a|DL
T,ρ = (

a−−→) for a ∈ APgm;

6. |α1 ; α2|DL
T,ρ = |α1|DL

T,ρ ◦ |α2|DL
T,ρ;

7. |α1 ∪ α2|DL
T,ρ = |α1|DL

T,ρ ∪ |α2|DL
T,ρ;

8. |α∗|DL
T,ρ = (|α|DL

T,ρ)
∗;

9. |φ?|DL
T,ρ = {(s, s) | s ∈ |φ|DL

T,ρ}.

Recall that |α1|DL
T,ρ◦|α2|DL

T,ρ is the composition of |α1|DL
T,ρ and |α1|DL

T,ρ, and (|α|DL
T,ρ)

∗ is the reflexive
and transitive closure of |α|DL

T,ρ, as defined in Section 2.1. We write ⊨DL φ iff |φ|DL
T,ρ = S for all

T and ρ.

DL has sound and complete proof system, as shown in Figure 2.8. We use ⊢DL φ to denote
the corresponding provability relation.

Theorem 2.11 ([36]). For any DL formula φ, ⊨DL φ iff ⊢DL φ.

2.11 λ-CALCULUS

λ-calculus [37] is a Turing-complete foundation of computation based on function abstrac-
tion and application.

Definition 2.38. Let V be a set of variables denoted by x, y, etc. The syntax of λ-calculus
is as follows:

λ-expressions e ::= x (2.81)

| e1 e2 // function application (2.82)

| λx . e // function abstraction (i.e., λ-abstraction (2.83)

where λ is a binder. We use freeVar(e) ⊆ V to denote the free variables of e and e[e′/x] to
denote the result of substituting e′ for x in e, where α-renaming implicitly happens to avoid
variable capture. Let Λ be the set of all λ-expressions.

25

(Propositional Tautology) φ, if φ is a propositional tautology

(Modus Ponens)
φ1 φ1 → φ2

φ2

(DL1) [α](φ1 → φ2)→ ([α]φ1 → [α]φ2)

(DL2) [α](φ1 ∧ φ2)↔ ([α]φ1 ∧ [α]φ2)

(DL3) [α ∪ β]φ↔ [α]φ ∧ [β]φ

(DL4) [α ; β]φ↔ [α][β]φ

(DL5) [ψ?]φ↔ (ψ → φ)

(DL6) φ ∧ [α][α∗]φ↔ [α∗]φ

(DL7) φ ∧ [α∗](φ→ [α]φ)→ [α∗]φ

(Gen)
φ

[α]φ

Figure 2.8: Sound and Complete Proof System of DL

In λ-calculus, we are interested in proving equations between λ-expressions. Equational
reasoning in λ-calculus includes the standard reflexivity, symmetry, transitivity, and congru-
ence proof rules in Figure 2.2, plus a distinguished (β) axiom schema that specifies the result
of function application:

(β) (λx . e) e′ = e[e′/x] for all x ∈ V and e, e′ ∈ Λ (2.84)

We write ⊢λ e1 = e2 to mean that e1 = e2 is provable.
λ-calculus has many notions of models. Here, we review the concrete Cartesian closed

category models, abbreviated as concrete ccc models (see [38, Definition 5.5.9]).
Firstly, we define application structures.

Definition 2.39. An application structure is a tuple (A,_ •A_) where A is a set and
•A : A× A→ A is a binary function.

Next, we define pre-models.

Definition 2.40. Given an applicative structure (A,_•A_) and a ∈ A, we define a function
A(a) : A → A given by A(a)(b) = a •A b for all b ∈ A. Let R(A) = codomain(A), which is

26

called the set of representable functions ; that is,

R(A) = {f : A→ A | there is a ∈ A such that f = A(a)} (2.85)

If there exists G : R(A)→ A such that A ◦ G is the identity function over R(A), we call G a
retraction function, and (A,_•A_,G) a pre-model.

Finally, we define concrete ccc models.

Definition 2.41. A concrete ccc model is a pre-model in Definition 2.40, if the following
rules for defining |e|λρ for all ρ : V → A are well-defined:

1. |x|λρ = ρ(x);

2. |e1e2|λρ = |e1|λρ •A |e2|λρ ;

3. |λx . e|λρ = G(fρe,x) where fρe,x(a) = |e|λρ[a/x] for a ∈ A and fρe,x ∈ R(A).

We write A ⊨λ e1 = e2 iff |e1|λρ = |e2|λρ for all ρ. We write ⊨λ e1 = e2 iff A ⊨λ e1 = e2 for all
concrete ccc models A.

Concrete ccc models are sound and complete with respect to ⊢λ, which denotes equational
reasoning over λ-expressions.

Theorem 2.12 ([39]). For any λ-expressions e1 and e2, we have ⊨λ e1 = e2 iff ⊢λ e1 = e2.

2.12 TERM-GENERIC FIRST-ORDER LOGIC

Term-generic first-order logic [40], or simply term-generic logic (abbreviated as TGL),
is a variant of many-sorted FOL whose syntax is parametric in a set of generic terms.
Generic terms generalizes FOL terms (Definition 2.3), but unlike FOL terms which are
inductively built using function symbols, generic terms are defined axiomatically. There
are two operations related to generic terms: free variables freeVar(e) and capture-avoiding
substitution e[e′/x]. These operations should satisfy certain conditions [40, Definition 2.1].
TGL formulas are built in the same way as FOL formulas, except that FOL terms are now
replaced by generic terms.

TGL aims at defining various logics and calculi that feature bindings, such as λ-calculus.
These bindings-featuring systems usually cannot be naturally defined as FOL theories. On
the other hand, the generic terms in TGL can be instantiated to different kinds of concrete

27

terms, such as the expressions of λ-calculus. This way, many bindings-featuring systems can
be naturally defined as TGL theories.

In this work, we do not need TGL in its full generality. Instead, we present a concrete
instance of TGL where the generic terms are inductively built from a syntax that features
binders of the form b(x : s1, ts2), where x : s1 is bound by b in ts2 . The semantics and proof
system of TGL will also be introduced using this concrete instance.

Definition 2.42. A (many-sorted) binder signature is a tuple (S, F,B,Π), where (S, F,Π) is
a FOL signature and B = {Bs1,s2,s}s1,s2,s∈S is an S3-indexed set of binders. Let V = {Vs}s∈S
be an S-indexed set of variables. The syntax of TGL is given by the following grammar:

TGL (S, F,B,Π)-terms ts ::= (syntax of FOL terms) (2.86)

| b(x : s1, ts2) with b ∈ Bs1,s2,s (2.87)

TGL formulas φ ::= (syntax of FOL formulas) (2.88)

| ts = t′s (2.89)

We use TGLTerm and TGLForm to denote the sets of TGL terms and formulas, respec-
tively.

Unlike FOL, the semantics of TGL has a Henkin-style definition, where terms and formulas
are interpreted at the same time.

Definition 2.43. Let A = {As}s∈S be an S-indexed set. A TGL A-valuation or simply TGL
valuation is a function ρ : V → A. Let TGLVal = [V → A] be the set of all TGL valuations.
A TGL model is a tuple ({As}s∈S, {At}t∈TGLTerm, {Aπ}π∈Π), where

1. Ats : TGLVal→ As is a function for every ts ∈ TGLTerm; in addition, the following
conditions should hold for all x : s ∈ Vs, ts, t′s ∈ TGLTerm, and ρ ∈ TGLVal:

(a) Ax : s(ρ) = ρ(x : s).

(b) Ats[t′s/x : s](ρ) = Ats(ρ[At′s(ρ)/x : s]);

2. Aπ ⊆ As1 × · · · × Asn for every π ∈ Πs1...sn .

Definition 2.44. Under the notation of Definition 2.43, we define Aφ ⊆ TGLVal for every
φ ∈ TGLForm using the following rules:

1. ρ ∈ Ats=t′s iff Ats(ρ) = At′s(ρ);

2. ρ ∈ Aπ(ts1 ,...,tsn) iff Aπ(Ats1 (ρ), . . . , Atsn (ρ)) holds;

28

3. ρ ∈ Aφ1∧φ2 iff ρ ∈ Aφ1 and ρ ∈ Aφ2 ;

4. ρ ∈ A¬φ iff ρ ̸∈ Aφ;

5. ρ ∈ A∃x : s . φ iff there exists a ∈ As such that ρ[a/x : s] ∈ Aφ.

We define the TGL satisfaction relation A, ρ ⊨TGL φ by ρ ∈ Aφ. We write A ⊨TGL φ iff
A, ρ ⊨TGL φ for all ρ, that is, Aφ = TGLVal. Given a set Γ of TGL formulas, we write
A ⊨TGL Γ iff A ⊨TGL ψ for all ψ ∈ Γ. For two sets ∆1 and ∆2, we write Γ ⊨TGL ∆1 ▷ ∆2 iff⋂
φ∈∆1

Aφ ⊆
⋃
φ∈∆2

Aφ for all A ⊨TGL Γ. Intuitively, ∆1 ▷ ∆2 states that if all the formulas
in ∆1 hold, then one of the formulas in ∆2 holds.

TGL has a sound and complete Gentzen-style proof system, as shown in Figure 2.9. The
proof system derives sequents of the form Γ ⊢TGL ∆1 ▷ ∆2, where Γ,∆1,∆2 ⊆ TGLForm.
Following the convention of writing Gentzen-style proof rules, we write ∆, φ to mean ∆∪{φ}.
We require that all the formulas in Γ are closed and ∆1,∆2 are finite. These requirements
are needed for Theorem 2.13.

Theorem 2.13 ([40, Theorem 3.1]). Let Γ be a set of closed TGL formulas. For any finite
∆1,∆2 ∈ TGLForm, Γ ⊨TGL ∆1 ▷ ∆2 iff Γ ⊢TGL ∆1 ▷ ∆2.

2.13 MATCHING LOGIC

Matching logic [2] is a variant of many-sorted FOL that makes no distinction between
function and predicate symbols, allowing them to uniformly build patterns. Patterns define
both structural and logical constraints and are interpreted in models as sets of elements, that
is, those that match them.

2.13.1 Matching logic syntax and semantics

Definition 2.45. A matching logic signature (S,Σ) is the same as a many-sorted signature,
where we call the elements in Σ matching logic symbols or simply symbols. Given a matching
logic signature (S,Σ) and an S-indexed set V = {Vs}s∈S of variables denoted by x : s, y : s,
etc., the syntax of matching logic is given by the following grammar:

matching logic patterns φs ::= x : s ∈ Vs (2.90)

| σ(φs1 , . . . , φsn) with σ ∈ Σs1...sn,s (2.91)

| φs ∧ φ′
s (2.92)

29

(Ax) ∆1 ▷ ∆2 if ∆1 ∩∆2 ̸= ∅

(Left→)
∆1 ▷ ∆2, φ1 ∆1, φ2 ▷ ∆2

∆1, (φ1 → φ2) ▷ ∆2

(Right→)
∆1, φ ▷ ∆2, φ2

∆1 ▷ ∆2, (φ1 → φ2)

(Left∧)
∆1, φ1, φ2 ▷ ∆2

∆1, (φ1 ∧ φ2) ▷ ∆2

(Right∧)
∆1 ▷ ∆2, φ1 ∆1 ▷ ∆2, φ2

∆1 ▷ ∆2, (φ1 ∧ φ2)

(Left∀)
∆1, ∀x . φ, φ[t/x] ▷ ∆2

∆1,∀x . φ ▷ ∆2

(Right∀)
∆1 ▷ ∆2, φ[y/x] if y is fresh
∆1 ▷ ∆2,∀x . φ

(Reflexivity)
∆1, t = t ▷ ∆2

∆1 ▷ ∆2

(Symmetry)
∆1 ▷ ∆2, t1 = t2 ∆1, t2 = t1 ▷ ∆2

∆1 ▷ ∆2

(Transitivity)
∆1 ▷ ∆2, t1 = t2 ∆1 ▷ ∆2, t2 = t3 ∆1, t1 = t3 ▷ ∆2

∆1 ▷ ∆2

(Cmpπ)

∆1 ▷ ∆2, ti = t′i for all 1 ≤ i ≤ n
∆1 ▷ ∆2, π(t1, . . . , tn)
∆1, π(t

′
1, . . . , t

′
n) ▷ ∆2

∆1 ▷ ∆2

(Sbs)
∆1 ▷ ∆2, t1 = t2 ∆1, t[t1/x] = t[t2/x] ▷ ∆2

∆1 ▷ ∆2

(Binder)
∆1 ▷ ∆2, t = t′ ∆1, b(x, t) = b(x, t′) ▷ ∆2

∆1 ▷ ∆2

Figure 2.9: Sound and Complete Proof System of TGL [40, Figs. 1-2] Plus (Binder)

30

| ¬φs (2.93)

| ∃x : s′ . φs (2.94)

Let MLPattern(S, V,Σ) = {MLPatterns(S, V,Σ)}s∈S be the S-indexed set of patterns.
We feel free to drop the parameters S, V , and even Σ when they are understood or not
important.

We adopt common abbreviation and shortcuts whenever possible. We feel free to drop the
sorts. For example, we write x and φ instead of x : s and φs when s is not important. When
we write a pattern, we assume it is well-formed and well-sorted, without explicitly specifying
the necessary conditions. For example, when we write φ1 → φ2, it is understood that φ1 and
φ2 should have the same sort. When we write σ(φ1, . . . , φn), it is understood that φ1, . . . , φn

should have the corresponding argument sorts as σ. When n = 0, we call σ a constant symbol
and write σ ∈ Σϵ,s. We write σ to mean the pattern σ(). We define the following notation:

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) ∀x : s . φ ≡ ¬∃x : s .¬φ (2.95)

φ1 → φ2 ≡ ¬φ1 ∨ φ2 ⊤s ≡ ∃x : s . x : s (2.96)

φ1 ↔ φ2 ≡ (φ1 → φ2) ∧ (φ2 → φ1) ⊥s ≡ ¬⊤s (2.97)

The only non-trivial definition is ⊤s ≡ ∃x : s . x : s. Its correctness is shown in Proposition 2.2.
Like in FOL, ∃ and ∀ are binders. We adopt the standard notions of free variables,

α-renaming, and capture-avoiding substitution. We let freeVar(φ) denote the set of free
variables in φ. When freeVar(φ) = ∅, we say φ is closed. We regard α-equivalent patterns
φ and φ′ as the same, and write φ ≡ φ′. We let φ[ψ/x] be the result of substituting ψ for
every free occurrence of x in φ, where α-renaming happens implicitly to prevent variable
capture. We let φ[ψ1/x1, . . . , ψn/xn] be the result of simultaneously substituting ψ1, . . . , ψn

for x1, . . . , xn.

Definition 2.46. Given a matching logic signature (S,Σ), a matching logic (S,Σ)-model or
simply a model is a tuple M = ({Ms}s∈S, {σM}σ∈Σ), where

1. Ms is a nonempty carrier set, for every s ∈ S;

2. σM : Ms1 × · · · ×Msn → P(Ms) is a function, for every σ ∈ Σs1...sn,s.

FOL function symbols can be regarded as a special instance of matching logic symbols,
where card(σM(a1, . . . , an)) = 1 for all a1 ∈ Ms1 , . . . , an ∈ Msn . Similarly, partial functions
in partial FOL [41] can be regarded as a special instance, where card(σM(a1, . . . , an)) ≤ 1

31

for all a1 ∈Ms1 , . . . , an ∈Msn . The undefinedness of σM at a1, . . . , an is captured by letting
σM(a1, . . . , an) = ∅.

Definition 2.47. Given a matching logic (S,Σ) and an (S,Σ)-model M . An M-valuation
or simply valuation is a function ρ : V → M . The matching logic interpretation function
|_|M,ρ : MLPattern→ P(M) is inductively defined as follows:

1. |x : s|M,ρ = {ρ(x : s)} for all x : s ∈ Vs;

2. |φ1 ∧ φ2|M,ρ = |φ1|M,ρ ∩ |φ2|M,ρ;

3. |¬φ|M,ρ =Ms \ |φ|M,ρ for every φs ∈MLPatterns;

4. |∃x : s′ . φ|M,ρ =
⋃
a∈Ms′

|φ|M,ρ[a/x];

5. |σ(φ1, ..., φn)|M,ρ = σext
M (|φ1|M,ρ, ..., |φn|M,ρ) for σ ∈ Σs1...sn,s;

where σext
M is the pointwise extension of σM defined in Section 2.1. We feel free to drop the

subscripts M and ρ when they are known from context. We say that φs is valid in M , written
M ⊨ φs, iff |φs|M,ρ =Ms for all ρ.

Intuitively, |φ|M,ρ is the set of elements that match φ under M and ρ. There is a close
relation between the semantics of patterns and set operations. For example, φ1∧φ2 is matched
by those elements that match both φ1 and φ2. Therefore, |φ1 ∧ φ|M,ρ = |φ1|M,ρ ∩ |φ|M,ρ. In
other words, conjunction (∧) means set intersection. Similarly, disjunction (∨) means set
union and negation (¬) means set complement.

Proposition 2.2 ([2]). |∃x : s . x : s|M,ρ =Ms.

Definition 2.48. Given a matching logic signature (S,Σ), a matching logic (S,Σ)-theory or
simply theory is a tuple (S,Σ,Γ), where Γ is a set of (S,Σ)-patterns/axioms. When (S,Σ) is
understood, we simply use Γ to denote the theory (S,Σ,Γ). We write M ⊨ Γ iff M ⊨ ψ for
all ψ ∈ Γ. We write Γ ⊨ φ iff M ⊨ φ for all M ⊨ Γ.

2.13.2 Important theories

Several mathematical instruments of practical importance, such as definedness, equality,
membership, and functions, can be defined as matching logic theories.

32

φ1 φ2

gray area matches φ1 ∧ φ2

φ1 φ2

gray area matches φ1 ∨ φ2

φ1

gray area matches ¬φ1

φ1 φ2

gray area matches φ1 → φ2

φ1 φ2

gray area matches φ1 ↔ φ2

Figure 2.10: Matching Logic Semantics Illustration [2, Fig. 4]

Definition 2.49. For a set S of sorts, let Σdefinedness and Γdefinedness be as follows:

Σdefinedness = {⌈_⌉s′s | s, s′ ∈ S} // definedness symbols (2.98)

Γdefinedness = {⌈x : s⌉s′s | s, s′ ∈ S} // (Definedness) axioms (2.99)

Furthermore, we introduce the following notation:

⌊φ⌋s′s ≡ ¬⌈¬φ⌉s
′

s // totality (2.100)

φ1 =
s′

s φ2 ≡ ⌊φ1 ↔ φ2⌋s
′

s // equality (2.101)

x ∈s′s φ ≡ ⌈x ∧ φ⌉s
′

s // membership (2.102)

φ1 ⊆s
′

s φ2 ≡ ⌊φ1 → φ2⌋s
′

s // set inclusion (2.103)

and feel free to drop the sort superscripts/subscripts when they are known from context.

Proposition 2.3 ([2]). For any M ⊨ Γdefinedness, the following hold:

1. (⌈_⌉s′s)M(a) =Ms′ for all a ∈Ms;

2. |⌈φ⌉s′s |M,ρ =Ms′ if |φ|M,ρ ̸= ∅; otherwise, |⌈φ⌉s′s |M,ρ = ∅;

3. |⌊φ⌋s′s |M,ρ =Ms′ if |φ|M,ρ =Ms; otherwise, |⌊φ⌋s′s |M,ρ = ∅;

4. |φ1 =
s′
s φ2|M,ρ =Ms′ if |φ1|M,ρ = |φ2|M,ρ; otherwise, |φ1 =

s′
s φ2|M,ρ = ∅;

33

5. |x ∈s′s φ|M,ρ =Ms′ if ρ(x) ∈ |φ|M,ρ; otherwise, |x ∈s′s φ|M,ρ = ∅;

6. |φ1 ⊆s
′
s φ2|M,ρ = Ms′ if |φ1|M,ρ ⊆ |φ1|M,ρ; otherwise, |φ1 ⊆s

′
s φ2|M,ρ = ∅; in particular,

|x ⊆s′s φ|M,ρ = |x ∈s
′
s φ|M,ρ;

7. M ⊨ φ1 =
s′
s φ2 if and only if M ⊨ φ1 ↔ φ2;

8. M ⊨ φ1 ⊆s
′
s φ2 if and only if M ⊨ φ1 → φ2.

In Section 2.13.1, we have shown that functions (or partial functions) can be regarded as
a special instance of matching logic symbols where card(σM(a1, . . . , an)) = 1 (or ≤ 1). We
can enforce the function (or partial function) semantics of a matching logic symbol using
patterns/axioms.

Definition 2.50. Given a matching logic symbol σ ∈ Σs1...sn,s, let Γfunction(σ) and Γpfunction(σ)

be as follows:

Γfunction(σ) = {∃y : s . σ(x1 : s1, . . . , xn : sn) = y : s} // (Function) (2.104)

Γpfunction(σ) = {∃y : s . σ(x1 : s1, . . . , xn : sn) ⊆ y : s} // (Partial Function) (2.105)

For brevity, we use σ : s1 × · · · × sn → s and σ : s1 × · · · × sn ⇀ s to denote (Function)
and (Partial Function), respectively, and we feel free to drop the sorts when they are not
important. Given F ⊆ Σ, which is a set of symbols to be interpreted as functions (or partial
functions), we let Γfunction(F) =

⋃
f∈F Γfunction(f) (or Γpfunction(F) =

⋃
f∈F Γpfunction(f)) to denote

the corresponding set of axioms.

Unlike FOL where formulas are two-valued (⊤ or ⊥), matching logic patterns can be
evaluated to any subsets of the underlying carrier sets. However, we can restore the FOL
semantics by letting ⊤s denote logical truth and ⊥s denote logical false in sort s. A FOL pred-
icate symbol over s1 . . . sn is a special instance of a matching logic symbol σ ∈ Σs1...sn,Formula

where Formula is a distinguished sort for formulas and σM(a1, . . . , an) ∈ {∅,MFormula} for
all ai ∈ Msi , 1 ≤ i ≤ n. Note that if MFormula is a singleton set, the above condition is
automatically satisfied for any symbol whose return sort is Formula. Following this idea, we
can define FOL in matching logic in the following way, which is a slightly modified version of
the definition given in [2, Section 7].

Definition 2.51. Given a FOL signature (S, F,Π), we define the corresponding matching
logic theory (SFOL(S,F,Π),ΣFOL(S,F,Π),ΓFOL(S,F,Π)), or simply (SFOL,ΣFOL,ΓFOL), as follows:

SFOL = S ∪ {Formula} (2.106)

34

ΣFOL = Γdefinedness ∪ F ∪ {π ∈ ΣFOL
s1...sn,Formula | π ∈ Πs1...sn} (2.107)

ΓFOL = Γdefinedness ∪ Γfunction(F) ∪ {x :Formula} (2.108)

That is, we add all the FOL sorts to matching logic, with an additional sort Formula for FOL
formulas. We include all the definedness symbols and axioms, which are necessary for defining
functions. We add FOL function symbols as matching logic symbols of the same arities and
define them using the function axioms. We add FOL predicate symbols as matching logic
symbols with the return sort Formula. The axiom {x :Formula} enforces the carrier set of
Formula to be a singleton set, so we do not need any axioms for π ∈ ΣFOL

s1...sn,Formula.
This way, all FOL formulas are matching logic ΣFOL-patterns of sort Formula.

Proposition 2.4 ([2, 42]). Under the notation of Definition 2.51, ⊨FOL φ iff ΓFOL ⊨ φ for
every FOL formula φ.

Another important result about the expressive power of matching logic is its ability to
define separation logic (SL) as an instance, where we fix the underlying model to be the
model of finite maps. However, the following result does not consider recursive symbols in
SL, which will be discussed in Section 5.3.

Definition 2.52. We define the matching logic theory (SMap,ΣMap,ΓMap) for maps as follows:

SMap = {Nat,Map} (2.109)

ΣMap = Σdefinedness ∪ {nil, emp, (_ 7→_), (_∗_)} (2.110)

and ΓMap includes Γdefinedness plus the following axioms:

nil : ϵ→ Nat (2.111)

emp : ϵ→ Map (2.112)

7→ : Nat× Nat⇀ Map (2.113)

∗ : Map×Map⇀ Map (2.114)

emp ∗ h = h (2.115)

h1 ∗ h2 = h2 ∗ h1 (2.116)

(h1 ∗ h2) ∗ h3 = h1 ∗ (h2 ∗ h3) (2.117)

nil 7→ x = ⊥ (2.118)

x 7→ y ∗ x 7→ z = ⊥ (2.119)

Furthermore, we define φ1 −∗ φ2 ≡ ∃h . h ∧ ⌊h ∗ φ1 → φ2⌋.

35

This way, all SL formulas (without recursive symbols) are patterns of sort Map.

Definition 2.53. The standard map model is an (SMap,ΣMap)-model (where the standard
interpretation for the definiteness symbols are omitted)

MMap = ({MMap
Nat ,M

Map
Map}, {nilMMap , empMMap , (_ 7→_)MMap , (_∗_)MMap}) (2.120)

where

1. MMap
Nat = N and MMap

Map = H, defined in Section 2.6;

2. nilMMap = {0};

3. empMMap = {∅}, where ∅ ∈ H denotes the empty heap;

4. (_ 7→_)MMap(m,n) = {hm,n} for every m,n ∈ N with m ̸= 0, where hm,n is the partial
function that maps m to n and is undefined anywhere else;

5. (_ 7→_)MMap(0, n) = ∅ for every n ∈ N;

6. (_∗_)MMap(h1, h2) = h1 ∪̇ h2 for every h1, h2 ∈ H that are disjoint;

7. (_∗_)MMap(h1, h2) = ∅ for every h1, h2 ∈ H that are not disjoint.

Proposition 2.5 ([2, Proposition 9.2]). MMap ⊨ ΓMap. In addition, ⊨SL φ iff MMap ⊨ φ for
any SL formula φ without recursive symbols.

In other words, SL can be regarded as an instance/fragment of matching logic when we fix
the underlying model to be MMap. In Section 5.3, we extend Proposition 2.5 to SL formulas
with recursive symbols.

2.13.3 Matching logic proof system P

Matching logic has a conditionally sound and complete Hilbert-style proof system P, as
shown in Figure 2.11. We use Γ ⊢P φ to denote the corresponding provability relation. We
call P a conditional proof system because it requires the definedness symbols and axioms
in Definition 2.49. There are proof rules of P that use equality “=” and membership “∈”,
both requiring the definedness symbols and axioms. Therefore, P cannot be used on theories
that do not have the definedness symbols or axioms. The completeness of P is proved by a
reduction from matching logic to pure predicate logic with equality, which is FOL extended
with a built-in equality symbol that has no function symbols. Through the reduction,

36

(Propositional Tautology) φ, if φ is a proposition tautology

(Modus Ponens)
φ1 φ1 → φ2

φ2

(Functional Substitution) (∀x . φ) ∧ (∃y . φ′ = y)→ φ[φ′/x] if y ̸∈ freeVar(φ′)

(∀) ∀x . (φ1 → φ2)→ (φ1 → ∀x . φ2) if x ̸∈ freeVar(φ1)

(Universal Generalization)
φ

∀x . φ

(Equality Introduction) φ = φ

(Equality Elimination) (φ1 = φ2) ∧ ψ[φ1/x]→ ψ[φ2/x]

(Membership Introduction)
φ

if x ̸∈ freeVar(φ)
∀x . (x ∈ φ)

(Membership Elimination)
∀x . (x ∈ φ)

if x ̸∈ freeVar(φ)
φ

(Membership Variable) (x ∈ y) = (x = y)

(Membership¬) (x ∈ ¬φ) = ¬(x ∈ φ)

(Membership∧) (x ∈ φ1 ∧ φ2) = (x ∈ φ1) ∧ (x ∈ φ2)

(Membership∃) (x ∈ ∃y . φ) = ∃y . (x ∈ φ), if x and y are distinct.

(Membership Symbol) x ∈ Cσ[φ] = ∃y . (y ∈ φ) ∧ (x ∈ Cσ[y])
if y ̸∈ freeVar(Cσ[φ])

Figure 2.11: Conditionally Sound and Complete Proof System P of Matching Logic [2]

37

the completeness of matching logic is reduced to the completeness of pure predicate logic
with equality. The definedness symbols and axioms are needed for defining equality and
membership, which are needed for mimicking the proofs of pure predicate logic with equality
in matching logic.

Definition 2.54. For a matching logic symbol σ ∈ Σ, we write Cσ[φ] to mean a pattern of
the form σ(ψ1, . . . , ψi−1, φ, ψi+1, . . . , ψn).

Theorem 2.14 ([2, Theorem 11.2]). For any matching logic theory Γ that includes the
definedness symbols and axioms in Definition 2.49, Γ ⊨ φ iff Γ ⊢P φ, for any matching logic
pattern φ.

2.14 REACHABILITY LOGIC

Reachability logic [12], abbreviated as RL, is an approach to program verification using
operational semantics. Unlike the other approaches such as Hoare-style verification, RL has
a language-independent proof system that offers sound and relatively complete deduction
for all programming languages. RL is the logic underlying the K framework (Section 2.15),
which has been used to define the formal semantics of many large programming languages,
from which their sound and relatively complete program verifiers are obtained using RL [3].

Semantics of RL is parametric in a matching logic model for computation configurations.
Specifically, fix a signature (of static program configurations) ΣCfg which may have various
sorts and symbols, among which there is a distinguished sort Cfg. Fix a ΣCfg-modelMCfg called
the configuration model, where the domain MCfg

Cfg is the set of all computation configurations.
RL formulas are called reachability rules, or simply rules, and have the form φ1 ⇒ φ2 where
φ1, φ2 are matching logic ΣCfg-patterns. A reachability system S is a finite set of rules, which
yields a transition system T = (MCfg

Cfg ,
T−→) where s T−→ t iff there exist (φ1 ⇒ φ2) ∈ S and an

MCfg-valuation ρ such that s ∈ |φ1|T,ρ and t ∈ |φ2|T,ρ. A rule ψ1 ⇒ ψ2 is S-valid, written
S ⊨RL ψ1 ⇒ ψ2, iff for all MCfg

Cfg -valuations ρ and s ∈ |ψ1|T,ρ, either there is an infinite trace

s
T−→ t1

T−→ t2
T−→ . . . in T or there exists t ∈ T such that s (T−→)∗ r and t ∈ |ψ2|T,ρ. Recall that

(
T−→)∗ is the reflexive and transitive closure of T−→ in Section 2.1.
RL has a sound and relatively complete proof system, as shown in Figure 2.12. The proof

system derives sequents of the form A ⊢C φ1 ⇒ φ2, where A (called axioms) and C (called
circularities) are finite sets of rules. The corresponding provability relation S ⊢RL ψ1 ⇒ ψ2 is
given by S ⊢∅ ψ1 ⇒ ψ2. In other words, we start with A = S and C = ∅ in any RL proof.
As the proof proceeds from the root, more rules can be added to C via (Circularity)
and then moved to A via (Transitivity), which can then be used via (Axiom). Note

38

(Axiom)
φ⇒ φ′ ∈ A
A ⊢C φ⇒ φ′

(Reflexivity) A ⊢∅ φ⇒ φ

(Transitivity)
A ⊢C φ1 ⇒ φ2 A ∪ C ⊢ φ2 ⇒ φ3

A ⊢C φ1 ⇒ φ3

(Logic Framing)
A ⊢C φ⇒ φ′ ψ is a FOL formula

A ⊢C φ ∧ ψ ⇒ φ′ ∧ ψ

(Consequence)
MCfg ⊨ φ1 → φ′

1 A ⊢C φ′
1 ⇒ φ′

2 MCfg ⊨ φ′
2 → φ2

A ⊢C φ1 ⇒ φ2

(Case Analysis)
A ⊢C φ1 ⇒ φ A ⊢C φ2 ⇒ φ

A ⊢C φ1 ∨ φ2 ⇒ φ

(Abstraction)
A ⊢C φ⇒ φ′ X ∩ freeVar(φ′) = ∅

A ⊢C ∃X .φ⇒ φ′

(Circularity)

A ⊢C∪{φ⇒φ′} φ⇒ φ′

A ⊢C φ⇒ φ′

Figure 2.12: Sound and Relatively Complete Proof System of RL [12]

that (Consequence) consults the underlying configuration model MCfg for the semantic
satisfaction relation, so the completeness of the RL proof system is relative to MCfg, which is
called relative completeness.

Theorem 2.15. Let S be a reachability system that satisfies the technical assumptions in [12].
For any ψ1 ⇒ ψ2, S ⊨RL ψ1 ⇒ ψ2 iff S ⊢RL ψ1 ⇒ ψ2.

2.15 K FRAMEWORK

K framework is an effort in realizing the ideal language framework vision in Figure 1.1.
An easy way to understand K is to look at it as a meta-language that can define other
programming languages and work with them. In Figure 2.13, we show an example K language
definition of an imperative language IMP. In the 39-line definition, we completely define the
formal syntax and the (executable) formal semantics of IMP, using a front-end language that
is easy to understand. From this language definition, K can generate many language tools for
IMP, including its parser, interpreter, verifier, etc.

We use IMP as an example to illustrate the main K features. There are two modules:
IMP-SYNTAX defines the syntax and IMP defines the semantics using rewrite rules. Syntax

39

1 module IMP-SYNTAX
2 imports DOMAINS-SYNTAX
3 syntax Exp ::=
4 Int
5 | Id
6 | Exp "+" Exp [left, strict]
7 | Exp "-" Exp [left, strict]
8 | "(" Exp ")" [bracket]
9 syntax Stmt ::=

10 Id "=" Exp ";" [strict(2)]
11 | "if" "(" Exp ")"
12 Stmt Stmt [strict(1)]
13 | "while" "(" Exp ")" Stmt
14 | "{" Stmt "}" [bracket]
15 | "{" "}"
16 > Stmt Stmt [left, strict(1)]
17 syntax Pgm ::= "int" Ids ";" Stmt
18 syntax Ids ::= List{Id,","}
19 endmodule

20 module IMP imports IMP-SYNTAX
21 imports DOMAINS
22 syntax KResult ::= Int
23 configuration
24 <T> <k> $PGM:Pgm </k>
25 <state> .Map </state> </T>
26 rule <k> X:Id => I ...</k>
27 <state>... X |-> I ...</state>
28 rule I1 + I2 => I1 +Int I2
29 rule I1 - I2 => I1 -Int I2
30 rule <k> X = I:Int => I ...</k>
31 <state>... X |-> (_ => I) ...</state>
32 rule {} S:Stmt => S
33 rule if(I) S _ => S requires I =/=Int 0
34 rule if(0) _ S => S
35 rule while(B) S => if(B) {S while(B) S} {}
36 rule <k> int (X, Xs => Xs) ; S </k>
37 <state>... (. => X |-> 0) </state>
38 rule int .Ids ; S => S
39 endmodule

Figure 2.13: Complete Formal Semantics of IMP in K

is defined as BNF grammars. The keyword syntax leads production rules that can have
attributes that specify the additional syntactic and/or semantic information. A production
rule can be associated with attributes, which are written in brackets. For example, the syntax
of if-statements is defined in lines 11-12 and has the attribute [strict(1)], meaning that
the evaluation order is strict in the first argument, i.e., the condition of an if-statement.
There are many other attributes. Some attributes (like [strict(1)]) have a semantic
meaning while the others are only used for parsing. For example, the attribute [left] in
line 6 means that the binary construct “+” is left associative.

In the module IMP, we define the configurations of IMP and its formal semantics. A
configuration (lines 23-25) is a constructor term that has all semantic information needed to
execute programs. IMP configurations are simple, consisting of the remaining IMP code to
be executed and a program state that maps variables to values. We organize configurations
using (semantic) cells: <k/> is the cell of IMP code and <state/> is the cell of program
states. In the initial configuration (lines 24-25), <state/> is empty and <k/> contains the
IMP program that we pass to K for execution (represented by the special K variable $PGM).

We define formal semantics using rewrite rules. For example, in lines 26-27, we define the
semantics of variable lookup, where we match on a variable X in the <k/> cell and look up
its value I in the <state/> cell, by matching on the binding X 7→ I. Then, we rewrite X to I,
denoted by X⇒ I in the <k/> cell in line 26. Rewrite rules in K are similar to those in the
rewrite engines such as Maude [43].

40

Chapter 3: TWO COMPLETENESS THEOREMS FOR MATCHING LOGIC

As we have seen in Section 2.13.3, the proof system P requires the definedness symbols
and axioms. A natural question is: Is there a proof system of matching logic that does not
require the definedness symbols or axioms and can be used to do formal reasoning in any
theories?

We will present such a proof system, which we refer to as the proof system H. Unlike P , H
does not require the definedness symbols or axioms so it can be used to do formal reasoning
in any matching logic theories. We will prove the soundness of H (Theorem 3.1).

As for completeness of H, we prove two important results. The first result is the definedness
completeness of H, stated in Theorem 3.4. It says that H is complete for any theory that
includes the definedness symbols and axioms. Therefore, H is at least as good as P . We prove
the definedness completeness result by showing that all the proof rules of P are derivable
using H and the definedness axioms.

The second completeness result is the local completeness of H, stated in Theorems 3.7
and 3.8. For this result, we define two new relations Γ ⊨loc φ and Γ ⊢loc

H φ (Definition 3.3).
We call Γ ⊨loc φ the local validity relation and Γ ⊢loc

H φ the local provability relation. These
local relations are stronger than their (global) counterparts Γ ⊨ φ and Γ ⊢H φ, respectively,
and when Γ = ∅, they are equivalent to their global counterparts. The local (soundness) and
completeness result states that Γ ⊨loc φ iff Γ ⊢loc

H φ.
We summarize the soundness, the definedness completeness, and the local completeness

of H in Figure 3.1. We know that the diagram commutes if Γ = ∅. We also know that the
diagram does not commute for an arbitrary Γ. There exists a (nonempty) Γ and a pattern φ
such that Γ ⊨ φ and Γ ⊢H φ, but Γ ̸⊨loc φ and Γ ̸⊢loc

H φ, and we give such a counterexample
in Section 3.3. The local soundness and completeness of H shows that the two local relations
are equivalent for all Γ and φ. However, we do not know whether the two global relations are
also equivalent for all Γ and φ. More precisely, we do not know whether Γ ⊨ φ always implies
Γ ⊢H φ; we call it the global completeness of H. We only know that the implication holds
when Γ = ∅, which is the local completeness result, and when Γ includes definedness, which
is the definedness completeness result. Global completeness of H is still an open problem.

3.1 MATCHING LOGIC PROOF SYSTEM H

We first need the following definition of application contexts.

41

Γ ⊢H φ
(Definition 3.2)

Soundness
===========⇒

Definedness Completeness⇐===============
if Γ includes definedness

Γ ⊨ φ
(Definition 2.48)~wwww diagram commutes if Γ = ∅

~wwww
Γ ⊢loc

H φ
(Definition 3.3)

Local Soundness
=========⇒
Local Completeness⇐===========

Γ ⊨loc φ
(Definition 3.3)

Figure 3.1: Known Relation among ⊨, ⊨loc, ⊢H, and ⊢loc
H

Definition 3.1. Let C be a pattern and □ be a distinguished variable that occurs exactly
once in C. We call C an application context if □ appears within a number of (nested) symbols.
Formally, C is an application context if

1. C is □; or

2. C is Cσ[C ′] and C ′ is an application context. Note that Cσ[C ′] is the shortcut of
σ(φ1, . . . , φi−1, C

′, φi+1, . . . , φn) in Definition 2.54.

We write C[φ] to mean C[φ/□].

The proof system H is shown in Figure 3.2. It has nine proof rules that can be divided
to three categories. The first category consists of four proof rules: (Propositional

Tautology), (Modus Ponens), (∃-Quantifier), and (∃-Generalization). These four
proof rules belong to the complete axiomatization of pure predicate logic; see, e.g., [44].
The second category consists of three proof rules: (Propagation∨), (Propagation∃), and
(Framing). These three proof rules characterize the behaviors of symbols and allow us to
propagate logical reasoning through symbols. The third category contains two technical rules
that are necessary for proving definedness completeness (Theorem 3.4) and local completeness
(Theorem 3.8).

Definition 3.2. We use Γ ⊢H φ to denote the provability relation defined by H.

Note that all proof rules of H are general rules and do not depend on any special symbols
such as the definedness symbols. Therefore, H can be used to do formal reasoning in any
theories.

3.1.1 Soundness of H

We will show that H is sound, that is, Γ ⊢H φ implies Γ ⊨ φ, stated in Theorem 3.1. We
first prove Lemma 3.1, known as the substitution lemma.

42

(Propositional Tautology) φ if φ is a propositional tautology over patterns

(Modus Ponens)
φ1 φ1 → φ2

φ2

(∃-Quantifier) φ[y/x]→ ∃x . φ

(∃-Generalization)
φ1 → φ2 if x ̸∈ freeVar(φ2)

(∃x . φ1)→ φ2

(Propagation∨) Cσ[φ1 ∨ φ2]→ Cσ[φ1] ∨ Cσ[φ2]

(Propagation∃) Cσ[∃x . φ]→ ∃x .Cσ[φ] if x ̸∈ freeVar(Cσ[∃x . φ])

(Framing)
φ1 → φ2

Cσ[φ1]→ Cσ[φ2]

(Existence) ∃x . x

(Singleton Variable) ¬(C1[x ∧ φ] ∧ C2[x ∧ ¬φ])
C1 and C2 are application contexts

Figure 3.2: Sound and Complete Proof System H of Matching Logic

Lemma 3.1. For any M and M-valuation ρ, |φ[y/x]|M,ρ = |φ|M,ρ[ρ(y)/x].

Proof. We do structural induction on φ.
If φ is z, distinct from x, we have |z[y/x]|M,ρ = |z|M,ρ = {ρ(z)} and |z|M,ρ[ρ(y)/x] = {ρ(z)}.
If φ is x, we have |x[y/x]|M,ρ = |y|M,ρ = {ρ(y)} and |x|M,ρ[ρ(y)/x] = {ρ(y)}.
If φ is σ(φ1, . . . , φn), we have

|σ(φ1, . . . , φn)[y/x]|M,ρ = |σ(φ1[y/x], . . . , φn[y/x])|M,ρ (3.1)

= σM(|φ1[y/x]|M,ρ, . . . , |φn[y/x]|M,ρ) (3.2)

= σM(|φ1|M,ρ[ρ(y)/x], . . . , |φn|M,ρ[ρ(y)/x]) (3.3)

= |σ(φ1, . . . , φn)|M,ρ[ρ(y)/x] (3.4)

If φ is φ1 ∧ φ2, we have |(φ1 ∧ φ2)[y/x]|M,ρ = |φ1[y/x] ∧ φ2[y/x]|M,ρ = |φ1[y/x]|M,ρ ∩
|φ2[y/x]|M,ρ = |φ1|M,ρ[ρ(y)/x] ∩ |φ2|M,ρ[ρ(y)/x] = |φ1 ∧ φ2|M,ρ[ρ(y)/x].

If φ is ¬φ1, we have |(¬φ1)[y/x]|M,ρ = |¬(φ1[y/x])|M,ρ = M \ |φ1[y/x]|M,ρ = M \
|φ1|M,ρ[ρ(y)/x] = |¬φ1|M,ρ[ρ(y)/x].

43

If φ is ∃z . φ1, we can assume that z is distinct from x or y by α-renaming. Then we have

|(∃z . φ1)[y/x]|M,ρ = |∃z . (φ1[y/x])|M,ρ (3.5)

=
⋃
a∈M

|φ1[y/x]|M,ρ[a/z] (3.6)

=
⋃
a∈M

|φ1|M,[ρ[a/z](y)/x] (3.7)

=
⋃
a∈M

|φ1|M,ρ[a/z][ρ(y)/x] (3.8)

=
⋃
a∈M

|φ1|M,ρ[ρ(y)/x][a/z] (3.9)

= |∃z . φ1|M,ρ[ρ(y)/x] (3.10)

Therefore, the conclusion holds by structural induction. QED.

Lemma 3.2. Let C be an application context. For any M and M-valuation ρ, we have

1. |C[⊥]|M,ρ = ∅;

2. |C[φ1 ∨ φ2]|M,ρ = |φ1|M,ρ ∪ |φ2|M,ρ;

3. |C[∃x . φ]|M,ρ =
⋃
a∈M |C[φ]|M,ρ[a/x] if x ̸∈ freeVar(C[∃x . φ]);

4. |φ1|M,ρ ⊆ |φ2|M,ρ implies |C[φ1]|M,ρ ⊆ |C[φ2]|M,ρ;

5. |C[x ∧ φ]|M,ρ ∩ |C[x ∧ ¬φ]|M,ρ = ∅.

Proof. We do structural induction on C.
(Base Case). In this case, C[□] is □ and C[φ] is just φ. All propositions hold.
(Induction Step). Let us assume C[□] ≡ Cσ[C1[□]], where

Cσ[□] ≡ σ(ψ1, . . . , ψi−1,□, ψi+1, . . . , ψn) (3.11)

for some σ ∈ Σ and C is an application context. By the inductive hypotheses, all propositions
hold for C1. For simplicity, let us define

σiM(A) = σM(|ψ1|M,ρ, . . . , |ψi−1|M,ρ, A, |ψi+1|M,ρ, . . . , |ψn|M,ρ)) (3.12)

for A ⊆ M . Note that σiM is monotone, that is, σiM(A1) ⊆ σiM(A2) if A1 ⊆ A2. Under the
above notation, |Cσ[φ]|M,ρ = σiM(|φ|M,ρ). We now prove (1)–(5).

For (1), we have |Cσ[C1[⊥]]|M,ρ = σiM(|C1[⊥]|M,ρ) = σiM(∅) = ∅.

44

For (2), we have |Cσ[C1[φ1∨φ2]]|M,ρ = σiM (|C1[φ1∨φ2]|M,ρ) = σiM (|C1[φ1]|M,ρ∪|C1[φ2]|M,ρ) =

σiM(|C1[φ1]|M,ρ) ∪ σiM(|C1[φ1]|M,ρ) = |Cσ[C1[φ1]]|M,ρ ∪ |Cσ[C1[φ2]]|M,ρ.
For (3), we have |Cσ[C1[∃x . φ]]|M,ρ = σiM(|C1[∃x . φ]|M,ρ) = σiM(

⋃
a |C1[φ]|M,ρ[a/x]). Be-

cause x ̸∈ freeVar(Cσ[C1[∃x . φ]]), we have σiM(
⋃
a |C1[φ]|M,ρ[a/x]) =

⋃
a σ

i
M(|C1[φ]|M,ρ[a/x]) =⋃

a |Cσ[C1[φ]]|M,ρ[a/x].
For (4), we need to prove that |Cσ[C1[φ1]]|M,ρ ⊆ |Cσ[C1[φ2]]|M,ρ, that is, σiM (|C1[φ1]|M,ρ) ⊆

σiM (|C1[φ2]|M,ρ). Since σiM is monotone, we only need to prove that |C1[φ1]|M,ρ ⊆ |C1[φ2]|M,ρ.
The latter holds by the inductive hypotheses and |φ1|M,ρ ⊆ |φ2|M,ρ.

For (5), we do a case analysis. If ρ(x) ∈ |φ|M,ρ, we have |x ∧ φ|M,ρ = ∅, and thus
|C[x ∧ φ]|M,ρ = ∅. Otherwise, we have |x ∧ ¬φ|M,ρ = ∅, and thus |C[x ∧ ¬φ]|M,ρ = ∅.

Therefore, all propositions hold by structural induction. QED.

Lemma 3.3. For any model M , the following propositions hold:

1. M ⊨ φ for propositional tautology φ over patterns of the same sort;

2. M ⊨ φ1 and M ⊨ φ1 → φ2 imply M ⊨ φ2;

3. M ⊨ φ[y/x]→ ∃x . φ;

4. M ⊨ φ1 → φ2 implies M ⊨ (∃x . φ1)→ φ2 if x ̸∈ freeVar(φ2);

5. M ⊨ Cσ[⊥]→ ⊥;

6. M ⊨ Cσ[φ1 ∨ φ2]→ Cσ[φ1] ∨ Cσ[φ2];

7. M ⊨ Cσ[∃x . φ]→ ∃x .Cσ[φ] if x ̸∈ freeVar(Cσ[∃x . φ]);

8. M ⊨ φ1 → φ2 implies M ⊨ Cσ[φ1]→ Cσ[φ2]

9. M ⊨ ∃x . x

10. M ⊨ ¬(C1[x ∧ φ] ∧ C2[x ∧ ¬φ])

Proof. (1) and (2) are proved in [2, Proposition 2.8]. Note that M ⊨ φ1 → φ2 iff |φ1|M,ρ ⊆
|φ2|M,ρ for all ρ (see [2, Proposition 2.6]). We will use this property to prove (3)–(8). In the
following, let ρ be any valuation.

(3). By Lemma 3.1, |φ[y/x]|M,ρ = |φ|M,ρ[ρ(y)/x] ⊆
⋃
a |φ|M,ρ[a/x] = |∃x . φ|M,ρ.

(4). We need to prove that |∃x . φ1|M,ρ ⊆ |φ2|M,ρ, that is,
⋃
a |φ1|M,ρ[a/x] ⊆ |φ2|M,ρ. We

only need to prove that |φ1|M,ρ[a/x] ⊆ |φ2|M,ρ for all a ∈ M . Because x ̸∈ freeVar(φ1), we
have |φ1|M,ρ[a/x] = |φ1|M,ρ. Thus, we only need to prove that |φ1|M,ρ ⊆ |φ2|M,ρ. The latter
holds by assumption.

45

(5)–(8) and (10). These propositions are direct consequences of Lemma 3.2.
(9). We have |∃x . x|M,ρ =

⋃
a |x|M,ρ[a/x] =

⋃
a{a} =M . QED.

We now state and prove the soundness of H in Theorem 3.1.

Theorem 3.1. H is sound, that is, Γ ⊢H φ implies Γ ⊨ φ.

Proof. The proof is standard. Because Γ ⊢H φ, there exists a Hilbert-style proof for φ under
Γ. We do mathematical induction on the length of the Hilbert-style proof for φ under Γ.

(Base Case). In this case, n = 1. Therefore, φ is an axiom of H or φ ∈ Γ. If φ is an axiom
of H, we have Γ ⊨ φ by Lemma 3.3. If φ ∈ Γ, then we have Γ ⊨ φ by Definition 2.48.

(Induction Step). Suppose the proof length is n + 1 for some n ≥ 1, as shown in the
following:

φ1, . . . , φn, φn+1 where φn+1 ≡ φ. (3.13)

If φn+1 is an axiom of H or φn+1 ∈ Γ, we have Γ ⊨ φn+1 as in the base case. If φn+1 is the
result of applying (Modus Ponens), (∃-Generalization), or (Framing), we have Γ ⊨ φ

by Lemma 3.3.
Therefore, we prove the soundness of H by induction. QED.

3.1.2 Important properties of H

Firstly, note that the proof rules (Propositional Tautology), (Modus Ponens), (∃-
Quantifier), and (∃-Generalization) form a complete axiomatization of (pure) predicate
logic, which is FOL without function symbols. It leads us to Proposition 3.1.

Proposition 3.1. Predicate logic reasoning is sound for matching logic.

Throughout this thesis, we will say “by FOL reasoning” to mean that a certain reasoning
step in matching logic can be accomplished by applying the four proof rules: (Propositional

Tautology), (Modus Ponens), (∃-Quantifier), and (∃-Generalization).
Secondly, we prove that frame reasoning is sound for matching logic.

Proposition 3.2. The following propositions hold:

1. If Γ ⊢H φi → φ′
i for 1 ≤ i ≤ n, then Γ ⊢H σ(φ1, . . . , φn)→ σ(φ′

1, . . . , φ
′
n);

2. If Γ ⊢H φ→ φ′, then Γ ⊢H C[φ]→ C[φ′
i], where C is an application context.

46

Proof. To prove (1), we only need to prove all the following propositions:

Γ ⊢H σ(φ1, φ2, . . . , φn−1, φn)→ σ(φ′
1, φ2, . . . , φn−1, φn)

Γ ⊢H σ(φ′
1, φ2, . . . , φn−1, φn)→ σ(φ′

1, φ
′
2, . . . , φn−1, φn)

· · ·
Γ ⊢H σ(φ′

1, φ
′
2, . . . , φ

′
n−1, φn)→ σ(φ′

1, φ
′
2, . . . , φ

′
n−1, φ

′
n)

(3.14)

These propositions can be directly proved by (Framing).
To prove (2), we do structural induction on C.
(Base Case). Suppose C is □. In this case, the proposition holds.
(Induction Step). Suppose C ≡ Cσ[C1], where σ ∈ Σ and C1 is an application context.

Then we have

Γ ⊢H φ→ φ′ // assumption (3.15)

Γ ⊢H C1[φ]→ C1[φ
′] // inductive hypothesis (3.16)

Γ ⊢H Cσ[C1[φ]]→ Cσ[C1[φ
′]] // (Framing) (3.17)

Therefore, (2) holds by structural induction. QED.

Thirdly, we show that certain logical reasoning can be propagated through application
contexts. More specifically, logical reasoning that has a “disjunctive” semantics can be
propagated through application contexts. This includes ∨ (disjunction) whose semantics is
set union, ∃ (existential quantification) whose semantics is also set union, and ⊥, which is
the unit of disjunction.

Proposition 3.3. Let C be an application context. The following propositions hold:

1. Γ ⊢H C[⊥]↔ ⊥;

2. Γ ⊢H C[φ1 ∨ φ2]↔ C[φ1] ∨ C[φ2];

3. Γ ⊢ C[∃x . φ]↔ ∃x .C[φ], if x ̸∈ freeVar(C[∃x . φ]);

4. Γ ⊢H C[φ1 ∨ φ2] iff Γ ⊢H C[φ1] ∨ C[φ2];

5. Γ ⊢ C[∃x . φ] iff Γ ⊢H ∃x .C[φ], if x ̸∈ freeVar(C[∃x . φ]).

Proof. We do structural induction on C.
(Base Case). Suppose C is □. In this case, all propositions hold.
(Induction Step). Suppose C is Cσ[C1] where C1 is an application context. We prove

(1)–(5) using the induction hypothesis about C1.

47

(1,“→”). By the inductive hypothesis, we have Γ ⊢H C1[⊥] → ⊥. By (Framing),
we have Γ ⊢H Cσ[C1[⊥]] → Cσ[⊥], i.e., Γ ⊢H C[⊥] → Cσ[⊥]. Therefore, we only need
to prove that Γ ⊢H Cσ[⊥] → ⊥. Let x be any variable and ψ be any pattern.1 We have
Γ ⊢H ⊥ → (x∧ψ) and Γ ⊢H ⊥ → (x∧¬ψ). By (Framing), we have Γ ⊢H Cσ[⊥]→ Cσ[x∧ψ]
and Γ ⊢H Cσ[⊥]→ Cσ[x ∧ ¬ψ]. Therefore, we have Γ ⊢H Cσ[⊥]→ (Cσ[x ∧ ψ] ∧ Cσ[x ∧ ¬ψ]).
On the other hand, by (Singleton Variable), we have Γ ⊢H ¬(Cσ[x ∧ ψ] ∧ Cσ[x ∧ ¬ψ]).
Therefore, Γ ⊢H Cσ[⊥]→ ⊥.

(1,“←”). By FOL reasoning.
(2,“→”). Same as (1,“→”) except that we use (Propagation∨).
(2,“←”). We only need to prove Γ ⊢H C[φi] → C[φ1 ∨ φ2] for i ∈ {1, 2}. They can be

proved by applying frame reasoning (Proposition 3.2) on Γ ⊢H φi → φ1 ∨ φ2.
(3,“→”). Same as (1,“→”) except that we use (Propagation∃).
(3,“←”). We only need to prove Γ ⊢H (∃x .C[φ])→ C[∃x . φ]. By (∃-Generalization),

we only need to prove Γ ⊢H C[φ]→ C[∃x . φ]. It can be proved by applying frame reasoning
(Proposition 3.2) on Γ ⊢H φ→ ∃x . φ.

(4) and (5) are direct consequences of (1)–(3).
Therefore, the propositions hold by structural induction. QED.

Lemma 3.4. For an application context C, Γ ⊢H φ implies Γ ⊢H ¬C[¬φ].

Proof.

1 φ hypothesis
2 ¬φ→ ⊥ by 1, FOL reasoning
3 C[¬φ]→ C[⊥] by 2, (Framing)
4 C[⊥]→ ⊥ by (Propagation)
5 C[¬φ]→ ⊥ by 3 and 4, FOL reasoning
6 ¬C[¬φ] by 5, FOL reasoning

QED.

Finally, we show that logical equivalence propagates through any context, as expected. A
context C (not just an application context) is a pattern with a distinguished variable □. We
use C[φ] to denote the result of in-place replacing □ with φ.

Proposition 3.4. For any context C (not just an application context), Γ ⊢H φ1 ↔ φ2 implies
Γ ⊢H C[φ1]↔ C[φ2].

1The proof of Γ ⊢H Cσ[⊥]→ ⊥ presented here is credited to Mircea Sebe.

48

Proof. We do structural induction on C. If C is □, the conclusion holds. If C has one of
the following forms: ¬C ′, ψ ∧ C ′, C ′ ∧ ψ, or ∃x .C ′, where C ′ is a context, the conclusion
holds by FOL reasoning. If C has the form Cσ[C

′], the conclusion holds by Proposition 3.2.
Therefore, the conclusion holds by structural induction. QED.

Proposition 3.4 allows us to replace any two logically equivalent patterns in any context.

3.1.3 Relation to modal logic proof rules

There is a close relation between matching logic and modal logic. More specifically,
matching logic symbols and modal operators are dual to each other.

Theorem 3.2. Given a matching logic symbol σ, we define its dual as σd(φ1, . . . , φn) ≡
¬σ(¬φ1, . . . ,¬φn). Then we have:

1. (K): ∅ ⊢H σd(φ1 → φ′
1, . . . , φn → φ′

n)→ (σd(φ1, . . . , φn)→ σd(φ′
1, . . . , φ

′
n));

2. (N): ∅ ⊢H φi implies ∅ ⊢H σd(φ1, . . . , φi, . . . , φn).

3. (Barcan): ∅ ⊢H (∀x . σd(. . . , φi, . . .))→ σd(. . . ,∀x . φi, . . .) if x does not occur free in
the “. . . ” part.

Proof. Let Cσ[□] = σ(φ1, . . . , φi−1,□, φi+1, . . . , φn).
(K). By FOL reasoning, we only need to prove the case of one argument, that is, ∅ ⊢H
¬Cσ[¬(φ → φ′)] → (¬Cσ[¬φ] → ¬Cσ[¬φ′]). By FOL reasoning, we only need to prove
∅ ⊢H Cσ[φ ∧ φ′] ∨ Cσ[¬φ] ∨ ¬Cσ[¬φ′]. By Proposition 3.3, we need to prove ∅ ⊢H Cσ[(φ ∧
φ′) ∨ ¬φ] ∨ ¬Cσ[¬φ′], i.e., ∅ ⊢H Cσ[φ

′ ∨ ¬φ] ∨ ¬Cσ[¬φ′]. By Proposition 3.3, we need to
prove ⊢H Cσ[φ

′] ∨ Cσ[¬φ] ∨ ¬Cσ[¬φ′]. The latter holds by FOL reasoning.
(N). It is a direct consequence of Lemma 3.4, where we let C to be Cσ.
(Barcan). By unfolding ∀x to ¬∃x¬, we need to prove that ∅ ⊢H (¬∃x .Cσ[¬φi]) →
¬Cσ[∃x .¬φi]. Therefore, we need to prove that ∅ ⊢H Cσ[∃x .¬φi]→ ∃x .Cσ[¬φi]. The latter
is provable by (Propagation∃). QED.

These above proof rules are also proof rules of polyadic modal logic and hyrbid logic [28, 45].
If we let n = 1, we obtain the standard (K) rule and (N) rule of modal logic K (Figure 2.3).
Therefore, matching logic can be regarded as an extension of modal logic with many-sorted
universes, many-sorted modal operators (i.e., symbols), first-order variables, and first-order
quantification. Related work such as [45] has studied this connection between matching logic
and modal logic for the quantifier-free fragment and proved some completeness results.

49

3.2 DEFINEDNESS COMPLETENESS

We will prove that the proof system H is complete for every theory that contains the
following definedness symbols and axioms in Definition 2.49:

⌈_⌉s′s ∈ Σs,s′ // definedness symbols (3.18)

⌈x : s⌉ // (Definedness) axioms (3.19)

This result is called definedness completeness, stated in Theorem 3.4. In other words, H is
as good as the conditional sound and complete proof system P in Section 2.13.3, but unlike
P , it does not rely on the existence of definedness symbols or axioms and can be used to do
formal reasoning with any theory. In fact, we will prove definedness completeness by showing
that all the proof rules of P are derivable using H and the definedness axioms, that is:

⌈x : s⌉ ⊢H (all the proof rules of P) (3.20)

Throughout this section we will assume that Γ is a theory that includes the definedness
axioms. To simplify our notation we feel free to drop the sorts when they are not important.

Let us first go through all the proof rules of P and see which of them are already known
to be derivable using H. The proof system P has 14 proof rules in total (Figure 2.11).
(Propositional Tautology) and (Modus Ponens) are also proof rules of H so they
are derivable. (∀) and (Universal Generalization) are derivable by FOL reasoning.
Therefore, we only need to consider the (Functional Substitution) rule, two (Equality)
rules, and seven (Membership) rules.

Lemma 3.5. Γ ⊢H φ1 ↔ φ2 implies Γ ⊢H φ1 = φ2.

Proof.

1 φ1 ↔ φ2 hypothesis
2 ¬⌈¬(φ1 ↔ φ2)⌉ by 1, Lemma 3.4
3 φ1 = φ2 by 2, definition of equality

QED.

Lemma 3.6. (Equality Introduction) can be proved in H.

Proof.

1 φ↔ φ propositional tautology
2 φ = φ by 1, Lemma 3.5

50

QED.

Lemma 3.7. (Membership Introduction) can be proved in H.

Proof.

1 φ hypothesis
2 φ→ (x→ φ) (Propositional Tautology)
3 x→ φ by 1 and 2, (Modus Ponens)
4 x→ x (Propositional Tautology)
5 x→ x ∧ φ by 3 and 4, FOL reasoning
6 ⌈x⌉ → ⌈x ∧ φ⌉ by 5, (Framing)
7 ⌈x⌉ definedness axiom
8 ⌈x ∧ φ⌉ by 6 and 7, (Modus Ponens)
9 x ∈ φ by 8, definition of membership
10 ∀x . (x ∈ φ) by 9, FOL reasoning

QED.

Lemma 3.8. (Membership Elimination) can be proved in H.

Proof.

1 ∀x . (x ∈ φ) hypothesis
2 (∀x . (x ∈ φ))→ x ∈ φ FOL reasoning
3 x ∈ φ by 1 and 2, (Modus Ponens)
4 ⌈x ∧ φ⌉ by 3, definition of membership
5 ¬(⌈x ∧ φ⌉ ∧ (x ∧ ¬φ)) (Singleton Variable)
6 ⌈x ∧ φ⌉ → (x→ φ) by 5, FOL reasoning
7 x→ φ by 4 and 6, (Modus Ponens)
8 ∀x . (x→ φ) by 7, FOL reasoning
9 (∃x . x)→ φ by 8, FOL reasoning
10 ∃x . x (Existence)
11 φ by 10 and 9, (Modus Ponens)

QED.

Lemma 3.9. (Membership Variable) can be proved in H.

Proof. By Lemma 3.5, we to prove ⊢H (x ∈ y) → (x = y) and ⊢H (x = y) → (x ∈ y). We
first prove ⊢H (x = y)→ (x ∈ y).

51

1 ⌈x⌉ definedness axiom
2 ⌈x⌉ ∨ ⌈y⌉ by 1, FOL reasoning
3 ⌈x ∨ y⌉ by 2, Proposition 3.3
4 ⌈¬(x↔ y) ∨ (x ∧ y)⌉ by 3, FOL reasoning
5 ⌈¬(x↔ y)⌉ ∨ ⌈x ∧ y⌉ by 4, Proposition 3.3
6 ¬⌈¬(x↔ y)⌉ → ⌈x ∧ y⌉ by 5, FOL reasoning
7 (x = y)→ (x ∈ y) by 6, definition

We then prove ⊢H (x ∈ y)→ (x = y).

1 ¬(⌈x ∧ y⌉ ∧ ⌈x ∧ ¬y⌉) by (Singleton Variable)
2 ¬(⌈x ∧ y⌉ ∧ ⌈¬x ∧ y⌉) by (Singleton Variable)
3 ⌈x ∧ y⌉ → ¬⌈x ∧ ¬y⌉ by 1, FOL reasoning
4 ⌈x ∧ y⌉ → ¬⌈¬x ∧ y⌉ by 2, FOL reasoning
5 ⌈x ∧ y⌉ → ¬⌈x ∧ ¬y⌉ ∧ ¬⌈¬x ∧ y⌉ by 3 and 4, FOL reasoning
6 ⌈x ∧ y⌉ → ¬(⌈x ∧ ¬y⌉ ∨ ⌈¬x ∧ y⌉) by 5, FOL reasoning
7 ⌈x ∧ y⌉ → ¬⌈(x ∧ ¬y) ∨ (¬x ∧ y)⌉ by 6, Proposition 3.3
8 ⌈x ∧ y⌉ → ¬⌈¬(x↔ y)⌉ by 7, FOL reasoning
9 (x ∈ y)→ (x = y) by 8, definition

QED.

Lemma 3.10. (Membership¬) can be proved in H.

Proof. We first prove ⊢H (x ∈ ¬φ)→ ¬(x ∈ φ).

1 ¬(⌈x ∧ φ⌉ ∧ ⌈x ∧ ¬φ⌉) by (Singleton Variable)
2 ⌈x ∧ ¬φ⌉ → ¬⌈x ∧ φ⌉ by 1, FOL reasoning
3 (x ∈ ¬φ)→ ¬(x ∈ φ) by 2, definition

We then prove ⊢H ¬(x ∈ φ)→ (x ∈ ¬φ).

1 ⌈x⌉ definedness axiom
2 ⌈(x ∧ φ) ∨ (x ∧ ¬φ)⌉ by 1, FOL reasoning
3 ⌈x ∧ φ⌉ ∨ ⌈x ∧ ¬φ⌉ by 2, Proposition 3.3
4 ¬⌈x ∧ φ⌉ → ⌈x ∧ ¬φ⌉ by 3, FOL reasoning
5 ¬(x ∈ φ)→ (x ∈ ¬φ) by 4, definition

QED.

Lemma 3.11. ⊢H (x ∈ (φ1 ∨ φ2))↔ (x ∈ φ1) ∨ (x ∈ φ2).

Proof. Use (Propagation∨) and FOL reasoning. QED.

52

Lemma 3.12. (Membership∧) can be proved in H.

Proof. Use Lemma 3.10 and 3.11, and the fact that ⊢H φ1 ∧ φ2 ↔ ¬(¬φ1 ∨ ¬φ2). QED.

Lemma 3.13. (Membership∃) can be proved in H.

Proof. Use (Propagation∃) and FOL reasoning. QED.

The following is a useful lemma about definedness symbols.

Lemma 3.14. ⊢H C[φ]→ ⌈φ⌉ for any application context C.

Proof. Let x be a fresh variable in the following proof.

1 ⌈x⌉ definedness axiom
2 ⌈x⌉ ∨ ⌈φ⌉ by 1, FOL reasoning
3 ⌈x ∨ φ⌉ by 2, Proposition 3.3
4 ⌈x ∧ ¬φ ∨ φ⌉ by 3, FOL reasoning
5 ⌈x ∧ ¬φ⌉ ∨ ⌈φ⌉ by 4, Proposition 3.3
6 C[x ∧ φ]→ ¬⌈x ∧ ¬φ⌉ by (Singleton Variable)
7 ¬⌈x ∧ ¬φ⌉ → ⌈φ⌉ by 5, FOL reasoning
8 C[x ∧ φ]→ ⌈φ⌉ by 6 and 7, FOL reasoning
9 ∀x . (C[x ∧ φ]→ ⌈φ⌉) by 8, FOL reasoning
10 (∃x .C[x ∧ φ])→ ⌈φ⌉ by 9, FOL reasoning
11 φ→ (∃x . x) ∧ φ by (Existence)
12 φ→ ∃x . (x ∧ φ) by 11, FOL reasoning
13 C[φ]→ C[∃x . (x ∧ φ)] by 12, (Framing)
14 C[∃x . (x ∧ φ)]→ ⌈φ⌉ by 10, Proposition 3.3
15 C[φ]→ ⌈φ⌉ by 13, 14, FOL reasoning

QED.

Corollary 3.1. ⊢H Cσ[φ] → ⌈φ⌉ and ⊢H ⌊φ⌋ → ¬Cσ[¬φ] for every symbol σ. Also,
⊢H φ→ ⌈φ⌉ and ⊢H ⌊φ⌋ → φ.

Proof. Let C be Cσ and □ in Lemma 3.14, respectively. QED.

We state and prove a deduction theorem of H.

Theorem 3.3. Let Γ be a theory that contains definedness. For any φ and ψ, if Γ∪{ψ} ⊢H φ

and the proof does not use (∃-Generalization) on any free variables of ψ, then Γ ⊢H
⌊ψ⌋ → φ. In particular, if ψ is closed, then Γ ∪ {ψ} ⊢H φ implies Γ ⊢H ⌊ψ⌋ → φ.

53

The condition regarding (∃-Generalization) is standard. For example, the deduction
theorem for FOL also has a similar condition [22]. The proof of Theorem 3.3 is standard, by
using mathematical induction on the length of the proof of Γ ∪ {ψ} ⊢H φ. In the following,
we give a semantic argument and explain why the axiom ψ becomes ⌊ψ⌋ when we move it
from the left-hand side of ⊢H to the right-hand side.

Suppose Γ ∪ {ψ} ⊨ φ where ψ is closed. By definition, M ⊨ Γ and M ⊨ ψ implies M ⊨ φ

for every M . In other words, if M ⊨ Γ, then we have

“ψ holds in M ” implies “φ holds in M ” (3.21)

The above implication can be equivalently stated as M ⊨ ⌊ψ⌋ → φ, because if ψ does not
hold in M , ⌊ψ⌋ is equivalent to ⊥, and the implication holds. Otherwise, ⌊ψ⌋ is equivalent to
⊤, and the implication holds iff φ holds. Therefore, an equivalent statement of Γ ∪ {ψ} ⊨ φ
is that for every M , if M ⊨ Γ then M ⊨ ⌊ψ⌋ → φ. The latter is equivalent to Γ ⊨ ⌊ψ⌋ → φ

by definition.
Note that Γ ⊨ ψ → φ is too strong as a conclusion, for it requires that ψ is always included

by φ, even in models where ψ does not hold. Here is a simple counterexample: Γ∪{ψ} ⊨ ⌊ψ⌋
does not imply Γ ⊨ ψ → ⌊ψ⌋. To better understand it, let us compare the following three
statements: (a) Γ ∪ {ψ} ⊨ φ; (b) Γ ⊨ ⌊ψ⌋ → φ; and (c) Γ ⊨ ψ → φ, where we assume that
ψ is closed for simplicity. By definition, (a) means that for all models M such that M ⊨ Γ

and M ⊨ ψ, we have M ⊨ φ. Here, M ⊨ ψ means that |ψ|M,ρ =M for all ρ. Statement (b)
means that for all models M such that M ⊨ Γ, we have M ⊨ ⌊ψ⌋ → φ. Compared with
(a), (b) checks more models. It checks not only models where ψ holds but also those where
ψ does not hold. For models M where ψ hold, we can easily conclude that M ⊨ ⌊ψ⌋ → φ

because by (a), we have the stronger result M ⊨ φ. For those models M where ψ does not
hold, we have that |ψ|M,ρ ̸= M for all ρ. This means that |⌊ψ⌋|M,ρ = ∅ for all ρ, and thus
|⌊ψ⌋ → φ|M,ρ =M no matter what φ is. This way, (a) implies (b), even if (b) checks more
models than (a). The above reasoning fails for (c) because we cannot conclude anything on
models where ψ does not hold.

Next, we prove Theorem 3.3.

Proof of Theorem 3.3. We do mathematical induction on the length of the proof Γ∪{ψ} ⊢H φ.
(Base Case). Suppose the proof length is 1. In this case, φ is an axiom of H or φ ∈ Γ∪{ψ}.

We have Γ ⊢H ⌊ψ⌋ → φ (noticing Corollary 3.1 if φ is ψ).
(Induction Step). Suppose the proof Γ ∪ {ψ} ⊢H φ has n+ 1 steps:

φ1, . . . , φn, φ. (3.22)

54

We now do a case analysis on how φ is proved.
Suppose φ is an axiom in H or φ ∈ Γ ∪ {ψ}. We have Γ ⊢H ⌊ψ⌋ → φ for the same reason

as (Base Case).
Suppose φ is proved by applying (Modus Ponens) on φi and φj for some 1 ≤ i, j ≤ n,

where φj has the form φi → φ. By the induction hypotheses, Γ ⊢H ⌊ψ⌋ → φi and
Γ ⊢H ⌊ψ⌋ → (φi → φ). By FOL reasoning, Γ ⊢H ⌊ψ⌋ → φ.

Suppose φ is proved by applying (∃-Generalization) on φ1 → φ2, and φ has the form
(∃x . φ1)→ φ2, where x ̸∈ freeVar(φ2). By the induction hypothesis, Γ ⊢H ⌊ψ⌋ → (φ1 → φ2).
Therefore, Γ ⊢H φ1 → (⌊ψ⌋ → φ2). By assumption, the proof of φ does not apply (∃-
Generalization) on any free variable of ψ. Therefore, x ̸∈ freeVar(ψ), and we have
Γ ⊢H (∃x . φ1) → (⌊ψ⌋ → φ2) by (∃-Generalization). Finally, we have Γ ⊢H ⌊ψ⌋ →
((∃x . φ1)→ φ2) by FOL reasoning.

Suppose φ is proved by applying (Framing) on φi for some 1 ≤ i ≤ n, then φi must
have the form φ′

i → φ′′
i , and φ must have the form Cσ[φ

′
i] → Cσ[φ

′′
i] for some σ. By the

induction hypothesis, Γ ⊢H ⌊ψ⌋ → (φ′
i → φ′′

i). We can prove Γ ⊢H ⌊ψ⌋ → (Cσ[φ
′
i]→ Cσ[φ

′′
i])

as follows:

1 ⌊ψ⌋ → (φ′
i → φ′′

i) hypothesis
2 φ′

i → φ′′
i ∨ ⌈¬ψ⌉ by 1, FOL reasoning

3 Cσ[⌈¬ψ⌉]→ ⌈¬ψ⌉ Corollary 3.1
4 Cσ[φ

′
i]→ Cσ[φ

′′
i ∨ ⌈¬ψ⌉] by 2, (Framing)

5 Cσ[φ
′
i]→ Cσ[φ

′′
i] ∨ Cσ[⌈¬ψ⌉] by 4, Proposition 3.3

6 Cσ[φ
′′
i] ∨ Cσ[⌈¬ψ⌉]→ Cσ[φ

′′
i] ∨ ⌈¬ψ⌉ by 3, FOL reasoning

7 Cσ[φ
′
i]→ Cσ[φ

′′
i] ∨ ⌈¬ψ⌉ by 5, 6, FOL reasoning

8 ⌊ψ⌋ → (Cσ[φ
′
i]→ Cσ[φ

′′
i]) by 7, FOL reasoning

Therefore, the conclusion holds by induction. QED.

Next, we continue to prove the proof rules of P .

Lemma 3.15. (Equality Elimination) can be proved in H.

Proof. Recall the definition of equality (φ1 = φ2) ≡ ⌊φ1 ↔ φ2⌋. Theorem 3.3 together with
Proposition 3.4 give us a nice way to deal with equality premises. To prove ⊢H (φ1 = φ2)→
(ψ[φ1/x]→ ψ[φ2/x]), we apply Theorem 3.3 and prove {φ1 ↔ φ2} ⊢H ψ[φ1/x]→ ψ[φ2/x],
which is proved by Proposition 3.4. Note that the (formal) proof given in Proposition 3.4 does
not use (∃-Generalization) at all, so the conditions of Theorem 3.3 are satisfied. QED.

Lemma 3.16. (Functional Substitution) can be proved in H.

55

Proof. Let z be a fresh variable that does not occur free in φ and φ′, and is distinct from x.
Notice the side condition that y does not occur free in φ′.

1 φ′ = z ↔ z = φ′ definition
2 z = φ′ → (φ[z/x]→ φ[φ′/x]) Lemma 3.15
3 (∀x . φ)→ φ[z/x] by axiom
4 φ′ = z → ((∀x . φ)→ φ[z/x]) FOL reasoning
5 φ′ = z → (φ[z/x]→ φ[φ′/x]) FOL reasoning
6 φ′ = z → ((∀x . φ)→ φ[φ′/x]) FOL reasoning
7 ∀z . (φ′ = z → ((∀x . φ)→ φ[φ′/x])) by 6
8 (∃z . φ′ = z)→ ((∀x . φ)→ φ[φ′/x]) FOL reasoning
9 (∀x . φ) ∧ (∃z . φ′ = z)→ φ[φ′/x] FOL reasoning
10 (∀x . φ) ∧ (∃y . φ′ = y)→ φ[φ′/x] FOL reasoning

QED.

Lemma 3.17. ⊢H Cσ[φ1 ∧ (x ∈ φ2)] = Cσ[φ1] ∧ (x ∈ φ2).

Proof. We first prove ⊢H Cσ[φ1 ∧ (x ∈ φ2)] → Cσ[φ1] ∧ (x ∈ φ2). By FOL reasoning, it
suffices to show both ⊢H Cσ[φ1 ∧ (x ∈ φ2)]→ Cσ[φ1] and ⊢H Cσ[φ1 ∧ (x ∈ φ2)]→ (x ∈ φ2).
The first follows immediately by (Framing) and FOL reasoning. The second can be proved
as:

1 ⌈x⌉
2 ⌈(x ∧ ¬φ2) ∨ (x ∧ φ2)⌉
3 ⌈x ∧ ¬φ2⌉ ∨ ⌈x ∧ φ2⌉
4 ¬⌈x ∧ ¬φ2⌉ → ⌈x ∧ φ2⌉
5 Cσ[⌈x ∧ φ2⌉]→ ¬⌈x ∧ ¬φ2⌉
6 Cσ[⌈x ∧ φ2⌉]→ ⌈x ∧ φ2⌉
7 Cσ[φ1 ∧ ⌈x ∧ φ2⌉]→ Cσ[⌈x ∧ φ2⌉]
8 Cσ[φ1 ∧ ⌈x ∧ φ2⌉]→ ⌈x ∧ φ2⌉
9 Cσ[φ1 ∧ (x ∈ φ2)]→ (x ∈ φ2)

QED.

Lemma 3.18. ⊢H ∃y . ((x = y) ∧ φ) = φ[x/y] if x and y are distinct.

Proof. The proof is by structural induction on φ and Lemma 3.17. QED.

Lemma 3.19. ⊢H φ = ∃y . (⌈y ∧ φ⌉ ∧ y) if y ̸∈ freeVar(φ).

Proof. We first prove ⊢H ∃y . (⌈y ∧ φ⌉ ∧ y)→ φ.

56

1 ¬(⌈y ∧ φ⌉ ∧ (y ∧ ¬φ)) (Singleton Variable)
2 ⌈y ∧ φ⌉ ∧ y → φ by 1, FOL reasoning
3 ∀y . (⌈y ∧ φ⌉ ∧ y → φ) by 2, axiom
4 ∃y . (⌈y ∧ φ⌉ ∧ y)→ φ by 3, FOL reasoning

We then prove ⊢H φ→ ∃y . (⌈y ∧ φ⌉ ∧ y). Let x be a fresh variable distinct from y.

1 x ∈ φ→ x ∈ φ
2 x ∈ φ→ ⌈x ∧ φ⌉
3 x ∈ φ→ ⌈x ∧ ⌈x ∧ φ⌉⌉
4 x ∈ φ→ x ∈ ⌈x ∧ φ⌉
5 x ∈ φ→ ∃y . (x = y ∧ x ∈ ⌈y ∧ φ⌉)
6 x ∈ φ→ ∃y . (x ∈ y ∧ x ∈ ⌈y ∧ φ⌉)
7 x ∈ φ→ ∃y . (x ∈ (y ∧ ⌈y ∧ φ⌉))
8 x ∈ φ→ x ∈ ∃y . (y ∧ ⌈y ∧ φ⌉)
9 x ∈ (φ→ ∃y . (y ∧ ⌈y ∧ φ⌉))
10 ∀x . (x ∈ (φ→ ∃y . (y ∧ ⌈y ∧ φ⌉)))
11 φ→ ∃y . (y ∧ ⌈y ∧ φ⌉)

QED.

Lemma 3.20. (Membership Symbol) is provable in H.

Proof. We first prove ⊢H x ∈ Cσ[φ] → ∃y . (y ∈ φ ∧ x ∈ Cσ[y]). Let Ψ ≡ ∃y . (y ∈ φ ∧ x ∈
Cσ[y]).

1 ∃y . (y ∈ φ ∧ x ∈ Cσ[y])→ Ψ

2 ∃y . (⌈y ∧ φ⌉ ∧ x ∈ Cσ[y])→ Ψ

3 ∃y . (⌈x ∧ ⌈y ∧ φ⌉⌉ ∧ x ∈ Cσ[y])→ Ψ

4 ∃y . (x ∈ ⌈y ∧ φ⌉ ∧ x ∈ Cσ[y])→ Ψ

5 ∃y . (x ∈ (⌈y ∧ φ⌉ ∧ Cσ[y]))→ Ψ

6 x ∈ ∃y . (⌈y ∧ φ⌉ ∧ Cσ[y])→ Ψ

7 x ∈ ∃y . Cσ[⌈y ∧ φ⌉ ∧ y]→ Ψ

8 x ∈ Cσ[∃y . ⌈y ∧ φ⌉ ∧ y]→ Ψ

9 x ∈ Cσ[φ]→ Ψ

We then prove ⊢H ∃y . (y ∈ φ ∧ x ∈ C[y])→ x ∈ C[φ]. In fact, we just need to apply the
same derivation as above on ⊢H Ψ→ ∃y . (y ∈ φ ∧ x ∈ C[y]). QED.

So far, we have proved all the proof rules of P using H and the definedness axioms.
Therefore, we have Lemma 3.21.

57

Lemma 3.21. Let Γ be a theory that contains the definedness symbols and axioms. For every
pattern φ, Γ ⊢P φ implies Γ ⊢H φ.

Therefore, H is complete for theories containing definedness.

Theorem 3.4. Let Γ be a theory that contains the definedness symbols and axioms. For
every pattern φ, Γ ⊨ φ implies Γ ⊢H φ.

Proof. Use Lemma 3.21 and the completeness of P (Theorem 2.14). QED.

3.3 LOCAL COMPLETENESS

We will present and prove local completeness for H. Local completeness states the
equivalence between the local validity relation ⊨loc and the local provability relation ⊢loc

H .
Both relations are stronger than their (global) counterparts ⊢H and ⊨. The relation among
these four relations has been shown in Figure 3.1.

Let us start by defining the two local relations.

Definition 3.3. Let Γ be a theory and φ be a pattern. The local provability relation Γ ⊢loc
H φ

holds iff there exists a finite subset ∆ ⊆ Γ such that ∅ ⊢H
∧
∆ → φ, where

∧
∆ is the

conjunction of all patterns in ∆. We let
∧
∅ be ⊤. The local validity relation Γ ⊨loc φ holds iff

for any model M , any valuation ρ, and any element a ∈M , a ∈ |ψ|M,ρ for all ψ ∈ Γ implies
a ∈ |φ|M,ρ.

The local relations are stronger than their global counterparts. In addition, if Γ = ∅, the
local relations are equivalent to their global counterparts.

Proposition 3.5. For any Γ and φ, the following hold:

1. Γ ⊢loc
H φ implies Γ ⊢H φ;

2. Γ ⊨loc φ implies Γ ⊨ φ;

3. ∅ ⊢loc
H φ iff ∅ ⊢H φ;

4. ∅ ⊨loc φ iff ∅ ⊨ φ.

Proof. (1). By definition, there exists a finite subset ∆ ⊆ Γ such that ∅ ⊢H
∧
∆→ φ. Note

that Γ ⊢H
∧

∆, so by (Modus Ponens), Γ ⊢H φ.
(2). Let M be a model such that M ⊨ Γ. Let ρ be any valuation and a ∈ M be any

element. Since M ⊨ Γ, we have M ⊨ ψ for all ψ ∈ Γ. Therefore, |ψ|M,ρ = M for all ψ ∈ Γ,

58

and thus a ∈ |ψ|M,ρ for all ψ ∈ Γ. By the definition of Γ ⊨loc φ, a ∈ |φ|M,ρ. Because a is
arbitrarily chosen, |φ|M,ρ =M . Because ρ is also arbitrarily chosen, M ⊨ φ.

(3) and (4). By definition. QED.

We point out that the other directions of (1) and (2) in Proposition 3.5 do not hold
in general. Consider Γ = {¬x}. We will show that Γ ̸⊢loc

H ⊥ but Γ ⊢H ⊥. To prove
Γ ̸⊢loc

H ⊥, assume the opposite, that is, ∅ ⊢H ¬x→ ⊥. By the soundness of H (Theorem 3.1),
∅ ⊨ ¬x → ⊥. To show the contradiction, let us construct a model M whose carrier set is
{0, 1}. Let ρ be a valuation such that ρ(x) = 0. Then we have |¬x→ ⊥|M,ρ = {0}, which
is not {0, 1}. This contradiction shows that Γ ̸⊢loc

H ⊥. On the other hand, we can prove
Γ ⊢H ⊥ as follows. Firstly, we have Γ ⊢H ¬x, which is equivalent to Γ ⊢H x → ⊥. By
(∃-Generalization), we have Γ ⊢H (∃x . x)→ ⊥. By (Existence) and (Modus Ponens),
we have Γ ⊢H ⊥. Therefore, the other directions of (1) and (2) in Proposition 3.5 do not hold
in general.

Now, to establish Figure 3.1, we only need to prove local completeness, stated in Theo-
rem 3.8. The proof presented here is inspired by the completeness proofs for polyadic modal
logic [28] and hybrid logic [46], with novel techniques to handle sorts, many-sorted symbols,
and quantifiers.

We start by defining consistent sets.

Definition 3.4. A theory Γ is consistent, if Γ ̸⊢loc
H ⊥. In addition, Γ is a maximal consistent

set (MCS) if for every Γ′ ⊋ Γ, Γ′ is inconsistent.

Intuitively, a consistent set gives a consistent “view” of elements in the underlying carrier
set. Recall that a pattern is matched by certain elements. If Γ is consistent, all patterns in Γ

can be matched by at least one common element. In other words, the infinite conjunction
“pattern”

∧
Γ is not ⊥. The larger Γ is, the smaller

∧
Γ becomes. An MCS is thus a

maximal Γ, without making
∧
Γ to be ⊥. Note that the smallest patterns except ⊥ are

singleton patterns, which are matched by one element. Therefore, we can think of MCSs
as representations of individual elements. This useful intuition motivates the definition of
canonical models whose elements are MCSs (Definition 3.6) as well as the Truth Lemma
(Lemma 3.26), which states that “Matching = Membership in MCSs”. Truth Lemma is the
key result that connects proofs and semantics.

We prove some properties about MCSs.

Proposition 3.6. Let Γ be an MCS. The following propositions hold:

1. φ ∈ Γ iff Γ ⊢loc
H φ; In particular, if ⊢H φ then φ ∈ Γ;

59

2. ¬φ ∈ Γ iff φ ̸∈ Γ;

3. φ1 ∧ φ2 ∈ Γ iff φ1 ∈ Γ and φ2 ∈ Γ; In general, for any finite pattern set ∆,
∧
∆ ∈ Γ

iff ∆ ⊆ Γ;

4. φ1 ∨ φ2 ∈ Γ iff φ1 ∈ Γ or φ2 ∈ Γ; In general, for any finite pattern set ∆,
∨

∆ ∈ Γ iff
∆ ∩ Γ ̸= ∅; As a convention, when ∆ = ∅,

∨
∆ is ⊥;

5. φ1, φ1 → φ2 ∈ Γ implies φ2 ∈ Γ; In particular, if ⊢H φ1 → φ2, then φ1 ∈ Γ implies
φ2 ∈ Γ.

Proof. By propositional reasoning. QED.

Definition 3.5. For an MCS Γ, we say that Γ is a witnessed MCS, if for every ∃x . φ ∈ Γ,
there exists y such that (∃x . φ)→ φ[y/x] ∈ Γ.

In the following, we show any consistent set Γ can be extended to a witnessed MCS Γ+.
The extension, however, requires an extension of the set of variables. To see why such an
extension is needed, consider the following example. Let Σ = (S, V,Σ) be a signature and
Γ = {¬x | x ∈ V } be a pattern set containing all variable negations. We leave it for the
readers to show that Γ is consistent. Here, we claim the consistent set Γ cannot be extended
to a witnessed MCS Γ+ in the signature Σ. The proof is by contradiction. Assume Γ+ exists.
By Proposition 3.6 and (Existence), ∃x . x ∈ Γ+. Because Γ+ is a witnessed MCS, there
is a variable y such that (∃x . x)→ y ∈ Γ+, and by Proposition 3.6, y ∈ Γ+. On the other
hand, ¬y ∈ Γ ⊆ Γ+. This contradicts the consistency of Γ+.

Lemma 3.22. Let Σ = (S, V,Σ) be a signature and Γ be a consistent set. Extend the variable
set V to V + with countably infinitely many new variables, and denoted the extended signature
as Σ+ = (V +, S,Σ). There exists a pattern set Γ+ in the extended signature Σ+ such that
Γ ⊆ Γ+ and Γ+ is a witnessed MCS.

Proof. We use MLPattern and MLPattern+ denote the set of all patterns in the original
and extended signatures, respectively. Enumerate all patterns φ1, φ2, · · · ∈ MLPattern+

and all variables x1, x2, . . . in V + \V . We will construct a non-decreasing sequence of pattern
sets Γ0 ⊆ Γ1 ⊆ Γ2 · · · ⊆MLPattern+

s , with Γ0 = Γ. Notice that Γ0 contains variables only
in V . Eventually, we will let Γ+ =

⋃
i≥0 Γi to be the witnessed MCS.

For every n ≥ 1, we define Γn as follows. If Γn−1 ∪{φn} is inconsistent, then let Γn = Γn−1.
Otherwise,

if φn is not of the form ∃x . ψ: (3.23)

60

Γn = Γn−1 ∪ {φn} (3.24)

if φn ≡ ∃x . ψ and xi is the first variable in V + \ V (3.25)

that does not occur free in Γn−1 and ψ: (3.26)

Γn = Γn−1 ∪ {φn} ∪ {ψ[xi/x]} (3.27)

Notice that in the second case, we can always pick a variable xi that satisfies the conditions
because by construction, Γn−1 ∪ {φn} uses at most finitely many variables in V + \ V .

We show that Γn is consistent for every n ≥ 0 by induction. The base case is to show Γ0

is consistent in the extended signature. Assume it is not. Then there exists a finite subset
∆0 ⊆fin Γ0 such that ⊢H

∧
∆0 → ⊥. The proof of

∧
∆0 → ⊥ is a finite sequence of patterns

in MLPattern+. We can replace every occurrence of the variable y ∈ V + \ V (y can have
any sort) with a variable y ∈ V that has the same sort as y and does not occur (no matter
bound or free) in the proof. By induction on the length of the proof, the resulting sequence
is also a proof of

∧
∆0 → ⊥, and it consists of only patterns in Pattern. This contradicts

the consistency of Γ0 as a subset of Pattern, and this contradiction finishes our proof of
the base case.

Now assume Γn−1 is consistent for n ≥ 1. We will show Γn is also consistent. If Γn−1∪{φn}
is inconsistent or φn does not have the form ∃x . ψ, Γn is consistent by construction. Assume
Γn−1 ∪ {φn} is consistent, φn ≡ ∃x . ψ, but Γn = Γn−1 ∪ {φn} ∪ {ψ[xi/x]} is not consistent.
Then there exists a finite subset ∆ ⊆fin Γn−1 ∪ {φn} such that ⊢H

∧
∆ → ¬ψ[xi/x]. By

(Universal Generalization), ⊢H ∀xi . (
∧

∆→ ¬ψ[xi/x]). Notice that xi ̸∈ freeVar(
∧

∆)

by construction, so by FOL reasoning ⊢H
∧

∆→ ¬∃xi . (ψ[xi/x]). Since xi ̸∈ freeVar(ψ), by
α-renaming, ∃xi . (ψ[xi/x]) ≡ ∃x . ψ ≡ φn, and thus ⊢H

∧
∆ → ¬φn. This contradicts the

assumption that Γn−1 ∪ {φn} is consistent.
Since Γn is consistent for any n ≥ 0, Γ+ =

⋃
n Γn is also consistent. This is because the

derivation that shows inconsistency would use only finitely many patterns in Γ+. In addition,
we know Γ+ is maximal and witnessed by construction. QED.

We will prove that for every witnessed MCS Γ = {Γs}s∈S, there exists a model M and a
valuation ρ such that for every φ ∈ Γs, |φ|M,ρ ≠ ∅. The next definition defines the canonical
model which contains all witnessed MCSs as its elements. We will construct our intended
model M as a submodel of the canonical model.

Definition 3.6. Given a signature Σ = (S,Σ). The canonical model W = ({Ws}s∈S,_W)

consists of

1. a carrier set Ws = {Γ | Γ is a witnessed MCS of sort s} for every sort s ∈ S;

61

2. an interpretation σW : Ws1×· · ·×Wsn → P(Ws) for every symbol σ ∈ Σs1...sn,s, defined
as Γ ∈ σW (Γ1, . . . ,Γn) if and only if for any φi ∈ Γi, 1 ≤ i ≤ n, σ(φ1, . . . , φn) ∈ Γ; In
particular, the interpretation for a constant symbol σ ∈ Σλ,s is σW = {Γ ∈ Ws | σ ∈ Γ}.

The carrier set W is not empty, thanks to Lemma 3.22.

The canonical model has a nontrivial property stated as the next lemma. The proof of the
lemma is difficult, so we leave it to the end of the subsection.

Theorem 3.5. Let Σ = (S,Σ) be a signature and Γ be a witnessed MCS of sort s ∈ S. Given
a symbol σ ∈ Σs1...sn,s and patterns φ1, . . . , φn of appropriate sorts. If σ(φ1, . . . , φn) ∈ Γ,
then there exist n witnessed MCSs Γ1, . . . ,Γn of appropriate sorts such that φi ∈ Γi for every
1 ≤ i ≤ n, and Γ ∈ σW (Γ1, . . . ,Γn).

Definition 3.7. Let Σ = (S,Σ) be a signature and W = ({Ws}s∈S,_W) be the canonical
model. Given a witnessed MCS Γ = {Γs}s∈S. Define Y = {Ys}s∈S be the smallest sets such
that Ys ⊆ Ws for every sort s, and the following inductive properties are satisfied:

1. Γs ∈ Ys for every sort s;

2. If ∆ ∈ Ys and there exist a symbol σ ∈ Σs1...sn,s and witnessed MCSs ∆1, . . . ,∆n of
appropriate sorts such that ∆ ∈ σW (∆1, . . . ,∆n), then ∆1 ∈ Ys1 , . . . ,∆n ∈ Ysn .

Let Y = (Y,_Y) be the model generated from Γ, where

σY (∆1, . . . ,∆n) = Ys ∩ σW (∆1, . . . ,∆n) for every σ ∈ Σs1...sn,s and ∆1 ∈ Ys1 , . . . ,∆n ∈ Ysn .

We give some intuition about the generated model Y = (Y,_Y). The interpretation σY is
just the restriction of the interpretation σM on Y . The carrier set Y is defined inductively.
Firstly, Y contains Γ. Given a set ∆ ∈ Y . If sets ∆1, . . . ,∆n are “generated” from ∆ by a
symbol σ, meaning that ∆ ∈ σW (∆1, , . . . ,∆n), then they are also in Y . Of course, a set ∆
is in Y maybe because it is generated from a set ∆′ by a symbol σ′, while ∆′ is generated
from a set ∆′′ by a symbol σ′′, and so on. This generating path keeps going and eventually
ends at Γ in finite number of steps. By definition, every member of Y has at least one such
generating path, which we formally define as follows.

Definition 3.8. Let Γ = {Γs}s∈S be a witnessed MCS and Y be the model generated from Γ.
A generating path π is either the empty path ϵ, or a sequence of pairs ⟨(σ1, p1), . . . , (σk, pk)⟩
where σ1, . . . , σk are symbols (not necessarily distinct) and p1, . . . , pk are natural numbers
representing positions. The generating path relation, denoted as GP , is a binary relation
between witnessed MCSs in Y and generating paths, defined as the smallest relation that
satisfies the following conditions:

62

1. GP (Γs, ϵ) holds for every sort s;

2. If GP (∆, π) holds for a set ∆ ∈ Ys and a generating path π, and there exist a symbol
σ ∈ Σs1...sn,s and witnessed MCSs ∆1, . . . ,∆n such that ∆ ∈ σW (∆1, . . . ,∆n), then
GP (∆i, ⟨π, (σ, i)⟩) holds for every 1 ≤ i ≤ n.

We say that ∆ has a generating path π in the generated model if GP (∆, π) holds. It is easy
to see that every witnessed MCS in Y has at least one generating path, and if a witnessed
MCS of sort s has the empty path ϵ as its generating path, it must be Γs itself.

Definition 3.9. Given a generating path π. Define the application context Cπ inductively
as follows. If π = ϵ, then Cπ is the identity context □. If π = ⟨π0, (σ, i)⟩ where σ ∈ Σs1...sn,s

and 1 ≤ i ≤ n, then Cπ = Cπ0 [σ(⊤s1 , . . . ,⊤si−1
,□,⊤si+1

, . . . ,⊤sn)].

A good intuition about Definition 3.9 is given as the next lemma.

Lemma 3.23. Let Γ be a witnessed MCS and Y be the model generated from Γ. Let ∆ ∈ Y .
If ∆ has a generating path π, then Cπ[φ] ∈ Γ for any pattern φ ∈ ∆.

Proof. The proof is by induction on the length of the generating path π. If π is the empty
path ϵ, then ∆ must be Γ and Cπ is the identity context, and Cπ[φ] = φ ∈ Γ for any φ ∈ ∆.
Now assume ∆ has a generating path π = ⟨π0, (σ, i)⟩ with σ ∈ Σs1...sn,s. By Definition 3.8,
there exist witnessed MCSs ∆s1 , . . . ,∆sn ,∆s ∈ Y and 1 ≤ i ≤ n such that ∆ = ∆si ,
∆s ∈ σW (∆s1 , . . . ,∆sn), and ∆s has π0 as its generating path. For every φ ∈ ∆ = ∆i, since
⊤sj ∈ ∆sj for any j ̸= i, by Definition 3.6, σ(⊤s1 , . . . ,⊤si−1

, φ,⊤si+1
, . . . ,⊤sn) ∈ ∆s. By

induction hypothesis, Cπ0 [σ(⊤s1 , . . . ,⊤si−1
, φ,⊤si+1

, . . . ,⊤sn)] ∈ Γ, while the latter is exactly
Cπ[φ]. QED.

Lemma 3.24. Let Γ be a witnessed MCS and Y be the model generated from Γ. For every
Γ1,Γ2 ∈ Y of the same sort and every variable x, if x ∈ Γ1 ∩ Γ2 then Γ1 = Γ2.

Proof. Let πi be a generating path of Γi for i = 1, 2. Assume Γ1 ̸= Γ2. Then there exists
a pattern φ such that φ ∈ Γ1 and ¬φ ∈ Γ2. Because x ∈ Γ1 ∩ Γ2, we know x ∧ φ ∈ Γ1 and
x∧¬φ ∈ Γ2. By Lemma 3.23, Cπ1 [x∧φ], Cπ2 [x∧¬φ] ∈ Γ, and thus Cπ1 [x∧φ]∧Cπ2 [x∧¬φ] ∈ Γ.
On the other hand, ¬(Cπ1 [x ∧ φ] ∧ Cπ2 [x ∧ ¬φ]) is an instance of (Singleton Variable)
and thus it is included in Γ. This contradicts the consistency of Γ. QED.

We will establish an important result about generated models in Lemma 3.26 (the Truth
Lemma), which links the semantics and syntax and is essential to the completeness result.
Roughly speaking, the lemma says that for any generated model Y and any witnessed MCS

63

∆ ∈ Y , a pattern φ is in ∆ if and only if the interpretation of φ in Y contains ∆. To
prove the lemma, it is important to show that every variable is interpreted to a singleton.
Lemma 3.24 ensures that every variable belongs to at most one witnessed MCS. To make sure
it is interpreted to exactly one MCS, we complete our model by adding a dummy element ⋆
to the carrier set, and interpreting all variables which are interpreted to none of the MCSs to
the dummy element. This motivates the next definition.

Definition 3.10. Let Γ = {Γs}s∈S be a witnessed MCS and Y be the Γ-generated model.
Γ-completed model, denoted as M = ({Ms}s∈S,_M), is inductively defined as follows for all
sorts s ∈ S:

1. Ms = Ys, if every x : s belongs at least one MCS in Ys;

2. Ms = Ys ∪ {⋆s}, otherwise.

We assume ⋆s is an entity that is different from any MCSs, and ⋆s1 ̸= ⋆s2 if s1 ̸= s2. For
every σ ∈ Σs1...sn,s, define its interpretation

σM(∆1, . . . ,∆n) =

∅ if some ∆i = ⋆si

σY (∆1, . . . ,∆n) ∪ {⋆s} if all ∆j ̸= ⋆sj and some ∆i = Γsi

σYΓ0
(∆1, . . . ,∆n) otherwise

(3.28)

The completed valuation ρ : V →M is defined as

ρ(x : s) =

{
∆ if x : s ∈ ∆

⋆s otherwise
(3.29)

The valuation ρ is a well-defined function, because by Lemma 3.24, if there are two witnessed
MCSs ∆1 and ∆2 such that x ∈ ∆1 and x ∈ ∆2, then ∆1 = ∆2.

Now we come back to prove Lemma 3.5. We need the following technical lemma.

Lemma 3.25. Let σ ∈ Σs1...sn,s be a symbol, Φ1, . . . ,Φn, ϕ be patterns of appropriate sorts,
and y1, . . . , yn, x be variables of appropriate sorts such that y1, . . . , yn are distinct, and

y1, . . . , yn ̸∈ freeVar(ϕ) ∪
⋃

1≤i≤n

freeVar(Φi) (3.30)

Then we have

⊢ σ(Φ1, . . . ,Φn)→ ∃y1 . . . ∃yn . σ(Φ1 ∧ (∃x . ϕ→ ϕ[y1/x]), . . . ,Φn ∧ (∃x . ϕ→ ϕ[yn/x]))

(3.31)

64

Proof. Notice that for every 1 ≤ i ≤ n,

⊢H ∃x . ϕ→ ∃yi.(ϕ[yi/x]). (3.32)

By easy matching logic reasoning,

⊢ σ(Φ1, . . . ,Φn)→ σ(Φ1 ∧ (∃x . ϕ→ ∃y1.(ϕ[y1/x])), . . . ,Φn ∧ (∃x . ϕ→ ∃yn.(ϕ[yn/x])))
(3.33)

Then use Proposition 3.3 to move the quantifiers ∃y1, . . . ,∃yn to the top. QED.

Now we are ready to prove Lemma 3.5.

Proof of Lemma 3.5. Recall that Γ ∈ σW (Γ1, . . . ,Γn) means for every ϕi ∈ Γi, 1 ≤ i ≤ n,
σ(ϕ1, . . . , ϕn) ∈ Γ. The main technique that we will be using here is similar to Lemma 3.22.
We start with the singleton sets {φi} for every 1 ≤ i ≤ n and extend them to witnessed
MCSs Γi, while this time we also need to make sure the results Γ1, . . . ,Γn satisfy the desired
property Γ ∈ σW (Γ1, . . . ,Γn). Another difference compared to Lemma 3.22 is that this time
we do not extend our set of variables, because our starting point, {φi}, contains just one
pattern and uses only finitely many variables. Readers will see how these conditions play a
role in the upcoming proof.

Enumerate all patterns of sorts s1, . . . , sn as follows ψ0, ψ1, ψ2, · · · ∈
⋃

1≤i≤n Patternsi .
Notice that s1, . . . , sn do not need to be all distinct. To ease our notation, we define a “choice”
operator, denoted as [φs]s′ , as follows

[φs]s′ =

{
φs if s = s′

nothing otherwise
(3.34)

For example, φs ∧ [ψ]s means φs ∧ ψ if ψ also has sort s. Otherwise, it means φs. The choice
operator propagates with all logic connectives in the natural way. For example, [¬ψ]s = ¬[ψ]s.

In the following, we will define a non-decreasing sequence of pattern sets Γ
(0)
i ⊆ Γ

(1)
i ⊆

Γ
(2)
i ⊆ · · · ⊆ Patternsi for each 1 ≤ i ≤ n, such that the following conditions are true for

all 1 ≤ i ≤ n and k ≥ 0:

1. If ψk has sort si, then either ψk or ¬ψk belongs to Γ
(k+1)
i .

2. If ψk has the form ∃x . ϕk and it belongs to Γ
(k+1)
i , then there exists a variable z such

that (∃x . ϕk)→ ϕk[z/x] also belongs to Γ
(k+1)
i .

3. Γ
(k)
i is finite.

65

4. Let π(k)
i =

∧
Γ
(k)
i for every 1 ≤ i ≤ n. Then σ(π(k)

1 , . . . , π
(k)
n) ∈ Γ.

5. Γ
(k)
i is consistent.

Among the above five conditions, condition (2)–(5) are like “safety” properties while
condition (1) is like a “liveness” properties. We will eventually let Γi =

⋃
k≥0 Γ

(k)
i and prove

that Γi has the desired property. Before we present the actual construction, we give some
hints on how to prove these conditions hold. Conditions (1)–(3) will be satisfied directly by
construction, although we will put a notable effort in satisfying condition (2). Condition (4)
will be proved hold by induction on k. Condition (5) is in fact a consequence of condition (4)
as shown below. Assume condition (4) holds but condition (5) fails. This means that Γ

(k)
i is

not consistent for some 1 ≤ i ≤ n, so ⊢H π
(k)
i → ⊥. By (Framing)

⊢H σ(π
(k)
1 , . . . , π

(k)
i , . . . , π(k)

n)→ σ(π
(k)
1 , . . . ,⊥, . . . , π(k)

n) (3.35)

Then by Proposition 3.3 and FOL reasoning,

⊢H σ(π
(k)
1 , . . . , π

(k)
i , . . . , π(k)

n)→ ⊥ (3.36)

Since σ(π(k)
1 , . . . , π

(k)
i , . . . , π

(k)
n) ∈ Γ by condition (4), we know ⊥ ∈ Γ by Proposition 3.6.

And this contradicts the fact that Γ is consistent.
Now we are ready to construct the sequence Γ

(0)
i ⊆ Γ

(1)
i ⊆ Γ

(2)
i ⊆ . . . for 1 ≤ i ≤ n. Let

Γ
(0)
i = {φi} for 1 ≤ i ≤ n. Obviously, Γ(0)

i satisfies conditions (3) and (4). Condition (5)
follows as a consequence of condition (4). Conditions (1) and (2) are not applicable.

Suppose we have already constructed sets Γ(k)
i for every 1 ≤ i ≤ n and k ≥ 0, which satisfy

the conditions (1)–(5). We show how to construct Γ(k+1)
i . In order to satisfy condition (1),

we should add either ψk or ¬ψk to Γ
(k)
i , if Γ(k)

i has the same sort as ψk. Otherwise, we simply
let Γ(k+1)

i be the same as Γ(k)
i . The question here is: if Γ(k)

i has the same sort as ψk, which
pattern should we add to Γ

(k)
i , ψk or ¬ψk? Obviously, condition (3) will still hold no matter

which one we choose to add, so we just need to make sure that we do not break conditions
(2) and (4).

Let us start by satisfying condition (4). Consider pattern σ(π
(k)
1 , . . . , π

(k)
n), which, by

condition (4), is in Γ. This tells us that the pattern

σ(π
(k)
1 ∧ [ψk ∨ ¬ψk]s1 , . . . , π(k)

n ∧ [ψk ∨ ¬ψk]sn) (3.37)

is also in Γ. Recall that [_]s is the choice operator, so if ψk has sort si, then π(k)
i ∧ [ψk∨¬ψk]si

is π(k)
i ∧ (ψk ∨¬ψk). Otherwise, it is π(k)

i . Use Proposition 3.3 and FOL reasoning, and notice

66

that the choice operator propagates with the disjunction ∨ and the negation ¬, we get

σ((π
(k)
1 ∧ [ψk]s1) ∨ (π

(k)
1 ∧ ¬[ψk]s1), . . . , (π(k)

n ∧ [ψk]sn) ∨ (π(k)
n ∧ ¬[ψk]sn)) ∈ Γ (3.38)

Then we use Proposition 3.3 again and move all the disjunctions to the top, and we end up
with a disjunction of 2n patterns:∨

σ(π
(k)
1 ∧ [¬](k)1 [ψk]s1 , . . . , π

(k)
n ∧ [¬](k)n [ψk]sn) ∈ Γ (3.39)

where [¬] means either nothing or ¬. Notice that some [ψk]si ’s might be nothing, so some of
these 2n patterns may be the same.

Notice that Γ is an MCS. By proposition 3.6, among these 2n patterns there must exists
one pattern that is in Γ. We denote the said pattern as

σ(π
(k)
1 ∧ [¬](k)1 [ψk]s1 , . . . , π

(k)
n ∧ [¬](k)n [ψk]sn) (3.40)

For any 1 ≤ i ≤ n, if [¬](k)i [ψk]si does not have the form ∃x . ϕ, we simply define Γ
(k+1)
i =

Γ
(k)
i ∪ {[¬]

(k)
i [ψk]si}. If [¬](k)i [ψk]si does have the form ∃x . ϕ, we need special effort to satisfy

condition (2). Without loss of generality and to ease our notation, let us assume that for
every 1 ≤ i ≤ n, pattern [¬](k)i [ψk]si has the same form ∃x . ϕ. We are going to find for each
index i a variable zi such that

σ(π
(k)
1 ∧ ∃x . ϕ ∧ (∃x . ϕ→ ϕ[z1/x]), . . . , π

(k)
n ∧ ∃x . ϕ ∧ (∃x . ϕ→ ϕ[zn/x])) ∈ Γ (3.41)

This will allow us to define Γ
(k+1)
i = Γ

(k)
i ∪ {∃x . ϕ} ∪ {∃x . ϕ → ϕ[zi/x]} which satisfies

conditions (2) and (4).
We find these variables zi’s by Lemma 3.25 and the fact that Γ is a witnessed set. Let

Φi ≡ π
(k)
i ∧ ∃x . ϕ for 1 ≤ i ≤ n. By construction, σ(Φ1, . . . ,Φn) ∈ Γ. Hence, by Lemma 3.25

and Proposition 3.6, for any distinct variables y1, . . . , yn ̸∈ freeVar(ϕ) ∪
⋃

1≤i≤n freeVar(Φi),

∃y1 . . . ∃yn . σ(Φ1 ∧ (∃x . ϕ→ ϕ[y1/x]), . . . ,Φn ∧ (∃n . ϕ→ ϕ[yn/x])) ∈ Γ (3.42)

The set Γ is a witnessed set, so there exist variables z1, . . . , zn such that

σ(Φ1 ∧ (∃x . ϕ→ ϕ[z1/x]), . . . ,Φn ∧ (∃x . ϕ→ ϕ[zn/x])) ∈ Γ (3.43)

This justifies our construction Γ
(k+1)
i = Γ

(k)
i ∪ {∃x . ϕ} ∪ {∃x . ϕ→ ϕ[zi/x]}.

So far we have proved our construction of the sequences Γ
(0)
i ⊆ Γ

(1)
i ⊆ Γ

(2)
i ⊆ . . . for

67

1 ≤ i ≤ n satisfy the conditions (1)–(5). Let Γi =
⋃
k≥0 Γ

(k)
i for 1 ≤ i ≤ n. By construction,

Γi is a witnessed MCS. It remains to prove that Γ ∈ σW (Γ1, . . . ,Γn). To prove it, assume
ϕi ∈ Γi for 1 ≤ i ≤ n. By construction, there exists K > 0 such that ϕi ∈ Γ

(K)
i for all

1 ≤ i ≤ n. Therefore, ⊢H π
(K)
i → ϕi. By condition (4), σ(π(K)

1 , . . . , π
(K)
n) ∈ Γ, and thus by

(Framing) and Proposition 3.6, σ(ϕ1, . . . , ϕn) ∈ Γ. QED.

Lemma 3.26 (Truth Lemma). Let Γ be a witnessed MCS, M be its completed model, and ρ
be the completed valuation. For any witnessed MCS ∆ ∈M and any pattern φ such that ∆
and φ have the same sort,

φ ∈ ∆ if and only if ∆ ∈ |φ|M,ρ

Proof. The proof is by induction on the structure of φ. If φ is a variable the conclusion
follows by Definition 3.6. If φ has the form ψ1 ∧ ψ2 or ¬ψ1, the conclusion follows from
Proposition 3.6. If φ has the form σ(φ1, . . . , φn), the conclusion from left to right is given by
Lemma 3.5. The conclusion from right to left follows from Definition 3.6.

Now assume φ has the form ∃x . ψ. If ∃x . ψ ∈ ∆, since ∆ is a witnessed set, there is a
variable y such that ∃x . ψ → ψ[y/x] ∈ ∆, and thus ψ[y/x] ∈ ∆. By induction hypothesis,
∆ ∈ |ψ[y/x]|M,ρ, and thus ∆ ∈ |∃x . ψ|M,ρ.

Consider the other direction. Assume ∆ ∈ |∃x . ψ|M,ρ. By definition there exists a
witnessed set ∆′ ∈ M such that ∆ ∈ |ψ|M,ρ[∆′/x]. By Definition 3.10, every element in M

(no matter if it is an MCS or ⋆) has a variable that is assigned to it by the completed
valuation ρ. Let us assume that variable y is assigned to ∆′, i.e., ρ(y) = ∆′. By Lemma 3.1,
∆ ∈ |ψ|M,ρ′ = |ψ[y/x]|M,ρ. By induction hypothesis, ψ[y/x] ∈ ∆. Finally notice that
⊢H ψ[y/x]→ ∃y . ψ[y/x]. By Proposition 3.6, ∃y . ψ[y/x] ∈ ∆, i.e., ∃x . ψ ∈ ∆. QED.

Theorem 3.6. For any consistent set Γ, there is a model M and a valuation ρ such that for
all patterns φ ∈ Γ, |φ|M,ρ ̸= ∅.

Proof. Use Lemma 3.22 and extend Γ to a witnessed MCS Γ+. Let M and ρ be the
completed model and valuation generated by Γ+ respectively. By Lemma 3.26, for all
patterns φ ∈ Γ ⊆ Γ+, we have Γ+ ∈ |φ|M,ρ, so |φ|M,ρ ̸= ∅. QED.

Now we are ready to prove local completeness of H.

Theorem 3.7. For any Γ and φ, Γ ⊨loc φ implies Γ ⊢loc
H φ.

Proof. Assume the opposite that Γ ̸⊢loc
H φ, which implies that Γ∪ {¬φ} is consistent. Extend

it to a witnessed MCS Γ+ and let M,ρ be the completed model and completed valuation
generated by Γ+. By Lemma 3.26, Γ+ ∈ |ψ|M,ρ for all ψ ∈ Γ, and Γ+ ∈ |¬φ|M,ρ, i.e.,
Γ+ ̸∈ |φ|M,ρ. This contradicts with Γ ⊨loc φ. QED.

68

Theorem 3.8. For any φ, ∅ ⊨ φ implies ∅ ⊢H φ.

Proof. By Proposition 3.5. QED.

In the literature, both Theorem 3.7 and Theorem 3.8 are called local completeness. To
distinguish them, Theorem 3.7 is called strong local completeness while Theorem 3.8 is called
weak local completeness.

69

Chapter 4: FROM MATCHING LOGIC TO MATCHING µ-LOGIC

Fixpoints are ubiquitous in computer science. They are given different names when
appearing in different contexts. Inductive datatypes are an example of fixpoints of the
constructors that build terms. The datatype of cons-lists list ::= Nil | Cons(element,

list) is the smallest set that is closed under Nil and Cons. Many temporal operators
are fixpoints; □φ (“always”) can be defined as a greatest fixpoint based on ◦φ (“next”); see
Section 5.8. The reachability relation φ1 ⇒ φ2 in reachability logic (RL) (Section 2.14) is
also a fixpoint; see Section 5.11. Furthermore, these fixpoints are studied and reasoned about
using different methods. For inductive datatypes, we often use structural induction to prove
their properties. For temporal operators, we can use the specialized proof rules of temporal
logics to reason about them. For example, □(φ → ◦φ) → (φ → □φ) is the (ind) proof
rule of infinite-trace LTL (Figure 2.5) that captures the inductive nature of □. For RL, the
(Circularity) proof rule in Figure 2.12 captures the co-inductive nature of reachability
reasoning.

On the other hand, the Knaster-Tarski fixpoint theorem (Theorem 2.1) governs everything
we need to know about the existence and construction of fixpoints. For any monotone function
f : P(A)→ P(A), f has fixpoints, and the least/greatest fixpoints are given as follows:

lfp f =
⋂
{A0 ⊆ A | f(A0) ⊆ A0} gfp f =

⋃
{A0 ⊆ A | A0 ⊆ f(A0)} (4.1)

Let us look at the lfp f as the discussion for gfp f is similar. From the construction above,
we know two things about lfp f . Firstly, it is a fixpoint, so lfp f = f(lfp f). Secondly, it is
the least pre-fixpoint, so for every A0 such that f(A0) ⊆ A0 (i.e., A0 is a pre-fixpoint of f),
lfp f ⊆ A0.

Our goal is to incorporate Theorem 2.1 into matching logic so we can obtain a unifying
foundation for specifying and reasoning fixpoints that can handle all instances and examples
of fixpoints, including inductive datatypes, temporal operators, reachability rules, and so
on. Luckily, matching logic patterns fit nicely with the setting of Theorem 2.1 because for
any pattern φ and a free variable x in it, we can regard φ (w.r.t. x) as a function over the
powerset domain in the following sense: ψ 7→ φ[ψ/x] for every ψ. Here, ψ is a pattern (so
semantically, a set) and φ[ψ/x] is the result of applying φ (as a function w.r.t. x) to ψ,
which is an argument. If φ is positive in x, then the corresponding function ψ 7→ φ[ψ/x] is
monotone and thus has fixpoints. We denote the least and the greatest fixpoints as µx . φ and
νx . φ, respectively. We also know two things about µx . φ (and similarly for νX . φ). Firstly,
it is a fixpoint, so ⊢ (µx . φ)↔ φ[(µx . φ)/x]. Secondly, it is smaller than any pre-fixpoint, so

70

⊢ φ[ψ/x]→ ψ (which states that ψ is a pre-fixpoint of φ) implies ⊢ (µx . φ)→ ψ.
If we could define µx . φ and νx . φ as notation in matching logic, just like how ∀x . φ ≡
¬∃x .¬φ is defined, we would have a directly logical incarnation of Theorem 2.1 in matching
logic and obtain a unifying logical foundation to specify and reason about any types of
fixpoints. Unfortunately, it turns out that µx . φ and νx . φ cannot be defined as notation in
matching logic. We have to extend matching logic with a new set of set variables, denoted by
X, Y , etc., and introduce an explicit µ operator to build least fixpoints; greatest fixpoints
are then defined as notations. We call the extended logic matching µ-logic to emphasize that
it has an explicit µ operator. The purpose of this chapter is to formally present matching
µ-logic and introduce its extended syntax, semantics, and proof rules.

4.1 HINTS ON NECESSITY OF EXTENSION

We explain why matching logic must be extended to support fixpoints. Let us assume
that we find a way to define fixpoints in matching logic as notation. That means that µx . φ
is a matching logic pattern, where x is a matching logic variable. Then we show that the
following rule fails to hold:

(Equivalence Congruence)
φ1 ↔ φ2

(µx . φ1)↔ (µx . φ2) (4.2)

Note that (Equivalence Congruence) is a highly desired property that is expected to
hold in any reasonable formal system. Its failure is thus a strong hint that µx . φ must not,
or at least, should not be defined as notation. It is more natural and reasonable to extend
matching logic to matching µ-logic in order to support fixpoints.

To see why (Equivalence Congruence) fails, let us first note that µx . x should be
equivalent to ⊥. This is because µx . x represents the identity function, whose least fixpoint
is the empty set, i.e., ⊥. Let us also note that µx . c should be equivalent to c for a constant
symbol c. This is because µx . c represents a constant function that returns c for all inputs.
So its only fixpoint is c itself.

We now build a counterexample of (Equivalence Congruence). We define a matching
logic theory Γ = {x, c}. The axiom x enforces the underlying carrier set to be a singleton set,
say {⋆}. The axiom c enforces the interpretation of c to be {⋆}, too. Thus we have Γ ⊨ x↔ c.
However, Γ ̸⊨ (µx . x)↔ (µx . c), because the left-hand side should be equivalent to ⊥ while
the right-hand side should be equivalent to c, and Γ ̸⊨ ⊥ ↔ c. Thus, (Equivalence

Congruence) fails to hold.

71

It means that if we were to define fixpoints in matching logic as notation, we either need
to drop the highly desired property (Equivalence Congruence) or live in a weird world
where µx . x is not equivalent to ⊥ (or µx . c is not equivalent to c). We want neither of
the above. Thus, we conclude that the proper way to add fixpoint support to in matching
logic is to extend it to matching µ-logic, which we present in Section 4.2. As a side remark,
(Equivalence Congruence) does hold in matching µ-logic; see Lemma 4.3.

4.2 MATCHING µ-LOGIC SYNTAX, SEMANTICS, AND PROOF SYSTEM

We define matching µ-logic syntax, semantics, and proof system and present some basic
results about its formal reasoning.

4.2.1 Matching µ-logic syntax and semantics

Definition 4.1. A matching µ-logic signature or simply a signature (S,Σ) is the same as
a matching logic signature in Definition 2.45. Given a matching µ-logic signature (S,Σ),
an S-indexed set EV = {EV s}s∈S of element variables denoted by x : s, y : s, etc., and an
S-indexed set SV = {SV s}s∈S of set variables denoted by X : s, Y : s, etc., the syntax of
matching µ-logic patterns or simply patterns is given by extending the syntax of matching
logic with the following grammar rules:

matching µ-logic patterns φs ::= (syntax of matching logic) (4.3)

| X : s (4.4)

| µX : s . φs (4.5)

where µX : s . φs requires that φs is positive in X : s, i.e.„ X : s does not occur under an odd
number of negations.

We feel free to drop the sorts when they are understood. The notion of free variables
freeVar(φ) and capture-avoiding substitution φ[ψ/x] and φ[ψ/X] are defined in the usual
way. We define νX . φ as follows

νX . φ ≡ ¬µX .¬φ[¬X/X] (4.6)

Note that there are three ¬’s, not two. Also note that ¬φ[¬X/X] is positive in X whenever
φ is positive in X.

72

Definition 4.2. Given a signature (S,Σ), a matching µ-logic (S,Σ)-model or simply (S,Σ)-
model is the same as a matching logic model in Definition 2.46. Given an (S,Σ)-model
M = ({Ms}s∈S, {σM}σ∈Σ), a matching µ-logic M-valuation or simply M-valuation is a pair
ρ = (ρEV , ρSV) where ρEV : EV →M is a matching logic M -valuation and ρSV : SV → P(M).

Definition 4.3. Given a signature (S,Σ) and an (S,Σ)-model M = ({Ms}s∈S, {σM}σ∈Σ),
the matching µ-logic interpretation function |φ|M,ρ is inductively defined for all φ and ρ as
follows:

1. |X : s|M,ρ = ρSV (X : s) for X : s ∈ SV ;

2. |µX : s . φs|M,ρ = lfp(A 7→ |φ|M,ρ[A/X : s]);

3. The rest rules are the same as Definition 2.47.

Here, lfp(A 7→ |φ|M,ρ[A/X : s]) is the least fixpoint of the function that maps A to |φ|M,ρ[A/X : s]

for A ⊆Ms.

The derived semantics of µX : s . φs and νX : s . φs are as follows, by Theorem 2.1:

|µX : s . φs|M,ρ = lfp(A 7→ |φ|M,ρ[A/X : s]) =
⋂
{A ⊆Ms | |φ|M,ρ[A/X : s] ⊆ A} (4.7)

|νX : s . φs|M,ρ = gfp(A 7→ |φ|M,ρ[A/X : s]) =
⋃
{A ⊆Ms | A ⊆ |φ|M,ρ[A/X : s]} (4.8)

A matching µ-logic theory or simply theory Γ is a set of patterns/axioms. We define M ⊨ φ,
M ⊨ Γ, and Γ ⊨ φ in the usual way. Note that if an axiom ψ ∈ Γ has free set variables,
then those set variables are effectively universally quantified. This way, matching µ-logic
allows to write axioms that features monadic universal second-order quantification at the top
of axioms. This fact is useful for defining powersets (Section 5.6.1) and second-order logic
(Section 5.6) as matching µ-logic theories.

4.2.2 Matching µ-logic proof system Hµ

The matching µ-logic proof system Hµ, as shown in Figure 4.1, extends the matching logic
proof system H in Figure 3.2 with three proof rules: (Substitution), (Pre-Fixpoint),
and (Knaster Tarski). The latter two have been discussed in Section 4.1. They are a
direct logical incarnation of the Knaster-Tarski fixpoint theorem (Theorem 2.1) into matching
µ-logic. The (Substitution) rule captures the semantic effect that a free set variable in a
matching µ-logic axiom is universally quantified. So if φ is provable and X ∈ freeVar(φ),
then φ[ψ/X] is still provable for any ψ. We use ⊢Hµ or simply ⊢ to denote the corresponding

73

(System H) all proof rules of H in Figure 3.2

(Substitution)
φ

φ[ψ/X]

(Pre-Fixpoint) φ[µX . φ/X]→ µX .φ

(Knaster Tarski)
φ[ψ/X]→ ψ

µX . φ→ ψ

Figure 4.1: Matching µ-Logic Proof System Hµ

provability relation of Hµ. Since Hµ extends H, we have that Γ ⊢H φ implies Γ ⊢ φ for any
matching logic theory Γ and pattern φ.

Theorem 4.1 ([47]). Hµ is sound, i.e., for any Γ and φ, Γ ⊢ φ implies Γ ⊨ φ.

4.2.3 Basic properties about Hµ

We first prove some basic lemmas about Hµ and then prove a deduction theorem (Theo-
rem 4.2).

We generalize Lemma 3.1 matching µ-logic with set variables and the µ operator.

Lemma 4.1. |φ[ψ/X]|M,ρ = |φ|M,ρ[ρ(ψ)/X] for all X ∈ SV .

Proof. The proof is the same as Lemma 3.1. The only interesting case is when φ ≡ µZ . φ1.
By α-renaming, we can safely assume Z ̸∈ freeVar(ψ). We have:

|(µZ . φ1)[ψ/X]|M,ρ = |µZ . (φ1[ψ/X])|M,ρ (4.9)

=
⋂
{A | |φ1[ψ/X]|M,ρ[A/Z] ⊆ A} (4.10)

=
⋂
{A | |φ1|M,ρ[A/Z][|ψ|M,ρ[A/Z]/X] ⊆ A} (4.11)

=
⋂
{A | |φ1|M,ρ[A/Z][|ψ|M,ρ/X] ⊆ A} (4.12)

=
⋂
{A | |φ1|M,ρ[|ψ|M,ρ/X][A/Z] ⊆ A} (4.13)

= |µZ . φ1|M,ρ[|ψ|M,ρ/X] (4.14)

= |φ|M,ρ[|ψ|M,ρ/X]. (4.15)

QED.

The proof system Hµ only defines (Pre-Fixpoint) and (Knaster Tarski) for µX .φ.
Here we show that their dual versions also hold for νX . φ.

74

Lemma 4.2. The following propositions hold:

1. (Pre-Fixpoint): Γ ⊢ νX . φ→ φ[νX . φ/X];

2. (Knaster Tarski): Γ ⊢ ψ → φ[ψ/X] implies Γ ⊢ ψ → νX . φ.

Proof. Simply unfold νX . φ to ¬µX .¬(φ[¬X/X]) and use the version of (Pre-Fixpoint)
and (Knaster Tarski) for the least fixpoints. QED.

We verify that (Equivalence Congruence) in Section 4.1 is indeed derivable in Hµ.

Lemma 4.3. Γ ⊢ φ1 → φ2 implies Γ ⊢ µX .φ1 → µX .φ2.

Proof. Use (Knaster Tarski), (Substitution), and (Pre-Fixpoint) plus standard
propositional reasoning. QED.

Lemma 4.4. For any context C, we have Γ ⊢ φ1 ↔ φ2 iff Γ ⊢ C[φ1]↔ C[φ2].

Proof. Carry out induction on the structure of C. Except the case C ≡ µX .C1, all other
cases have been proved in Proposition 3.4. While the µ-case is proved by Lemma 4.3. QED.

Lemma 4.4 allows us to in-place unfold a fixpoint pattern in any context. That is, we can
freely replace µX .φ (or νX . φ) with φ[(µX .φ)/X] (or φ[(νX . φ)/X]) in any context.

Lemma 4.5. A context C is positive if it is positive in □; otherwise, it is negative. Let
Γ ⊢ φ1 → φ2. We have

Γ ⊢ C[φ1]→ C[φ2] if C is positive, (4.16)

Γ ⊢ C[φ2]→ C[φ1] if C is negative. (4.17)

Proof. Carry out induction on the structure of C. The cases when C is a propositional/FOL
context are trivial. The case when C is a symbol application is proved by (Framing). The
case when C is µ is proved by Lemma 4.3. QED.

Lemma 4.6. Γ ⊢ µX .φ↔ φ[µX .φ/X].

Proof. We prove both directions.
(Case “→”). Apply (Knaster Tarski), and we prove Γ ⊢ φ[(φ[µX .φ/X])/X] →

φ[µX .φ/X]. Consider Lemma 4.5, where we let C be φ[□/X]. Since φ is positive in X as
required by the wellformedness condition of µX .φ, we know that C is a positive context.
Thus, we just need to prove Γ ⊢ φ[µX .φ/X]→ φ, which is proved by (Pre-Fixpoint).

(Case “←”) is exactly (Pre-Fixpoint). QED.

75

Lemma 4.7. Let ψ be a predicate pattern, i.e., ⊢ ψ = ⊤ ∨ ψ = ⊥, and C be a context where
□ is not under any µ’s. We have ⊢ ψ ∧ C[φ]↔ ψ ∧ C[ψ ∧ φ] for all φ.

Proof. Carry out induction on the structure of C. The cases when C is a propositional/FOL
context are trivial. The case when C is a symbol application is proved using the fact that
predicate patterns propagate through symbols. Since □ does not occur under any µ’s, we
have considered all the cases. QED.

Lemma 4.8. Let ψ be a predicate pattern and φ be a pattern. Let X be a set variable that does
not occur under any µ’s in φ, and X ̸∈ freeVar(ψ). We have ⊢ ψ ∧ µX .φ↔ µX . (ψ ∧ φ).

Proof. Note that “←” is proved by Lemma 4.3. We only need to prove “→”. By propositional
reasoning, the goal becomes ⊢ µX .φ→ ψ → µX . (ψ∧φ) and we apply (Knaster Tarski).
We obtain ⊢ ψ ∧φ[ψ → µX . (ψ ∧φ)/X]→ µX . (ψ ∧φ). By (Pre-Fixpoint), we just need
to prove ⊢ ψ ∧ φ[ψ → µX . (ψ ∧ φ)/X] → ψ ∧ φ[µX . (ψ ∧ φ)/X]. By Lemma 4.8, we just
need to prove ⊢ ψ ∧ φ[ψ ∧ (ψ → µX . (ψ ∧ φ))/X]→ ψ ∧ φ[µX . (ψ ∧ φ)/X], which then by
Lemma 4.5 becomes ⊢ ψ ∧ φ[ψ ∧ (µX . (ψ ∧ φ))/X] → ψ ∧ φ[µX . (ψ ∧ φ)/X], which then
follows by Lemma 4.8. QED.

We present a deduction theorem for Hµ.

Theorem 4.2. Let Γ be a theory that includes the definedness symbols and axioms, and φ, ψ
be two patterns. If Γ∪{ψ} ⊢ φ and the proof (1) does not use (Universal Generalization)
on free element variables in ψ; (2) does not use (Knaster Tarski), unless (Knaster

Tarski) set variable X does not occur under any µ’s in φ and X ̸∈ freeVar(ψ); (3) does not
use (Substitution) on free set variables in ψ, then Γ ⊢ ⌊ψ⌋ → φ.

Proof. Carry out induction on the length of the proof Γ ∪ {ψ} ⊢ φ. (Base Case) and
(Induction Case) for (Modus Ponens) and (Universal Generalization) are proved
as in Theorem 4.2. We only need to prove (Induction Case) for (Knaster Tarski) and
(Substitution).

(Knaster-Tarski). Suppose φ ≡ µX .φ1 → φ2. We should prove that Γ ⊢ ⌊ψ⌋ →
(µX .φ1 → φ2), i.e., Γ ⊢ ⌊ψ⌋ ∧ µX .φ1 → φ2. Note that ⌊ψ⌋ is a predicate pattern. By
Lemma 4.8, our goal becomes Γ ⊢ µX . (⌊ψ⌋ ∧ φ1) → φ2. By (Knaster Tarski), we
need to prove Γ ⊢ (⌊ψ⌋ ∧ φ1)[φ2/X] → φ2. Note that X ̸∈ freeVar(⌊ψ⌋), so the above
becomes Γ ⊢ ⌊ψ⌋ ∧ φ1[φ2/X]→ φ2, i.e., Γ ⊢ ⌊ψ⌋ → φ1[φ2/X]→ φ2, which is our induction
hypothesis.

(Substitution). Trivial. Note that X ̸∈ freeVar(ψ). QED.

76

4.3 REDUCTION TO MONADIC SECOND-ORDER LOGIC

It is shown in [2] that matching logic patterns can be translated into equivalent formulas
in pure predicate logic with equality (i.e., FOL that is extended with equality and has no
function symbols). The idea is to define for every pattern φ a corresponding formula written
PL2(φ, r) where r is a fresh variable, with the intuition that r matches φ iff PL2(φ, r) holds.
In other words, we reduce the powerset semantics of patterns to the classical FOL semantics
by defining the membership relation. This way, a pattern φ is valid (i.e., is matched by every
element) iff PL(φ) ≡ ∀r :PL2(φ, r) holds; here r is a variable that has the same sort as φ.

Following a similar idea, we can define a reduction from matching µ-logic to second-order
logic (SOL), or more precisely, to monadic SOL (abbreviated as MSO). For any matching
µ-logic pattern φ, we define a corresponding MSO formula MSO2(φ, r) with a fresh variable
r, such that r matches φ iff MSO2(φ, r) holds. Then, φ is valid iff MSO(φ) ≡ ∀r .MSO2(φ, r)

holds.
The reduction from matching µ-logic to MSO is given as follows. Given a matching

µ-logic signature (S,Σ) and the two sets EV = {EV s}s∈S and SV = {SV s}s∈S of element
and set variables, we define a MSO signature (SMSO, CMSO,ΠMSO) by letting SMSO = S,
CMSO = ∅, and ΠMSO = {πσ : s1 × · · · × sn × s | σ ∈ Σs1...sn,s}. All element variables in EV

are included as MSO element variables. For every set variable X : s ∈ SV s, we add it as
a unary predicate variable over sort s. We define the translation from (S,Σ)-patterns to
(SMSO, CMSO,ΠMSO)-formulas as follows:

MSO(φ) = ∀r .MSO2(φ, r) (4.18)

MSO(Γ) = {MSO(ψ) | ψ ∈ Γ} (4.19)

MSO2(x, r) = x = r (4.20)

MSO2(σ(φ1, . . . , φn), r) = ∃r1 . . . ∃rn .MSO2(φi, ri) ∧ πσ(r1, . . . , rn, r) (4.21)

MSO2(¬φ, r) = ¬MSO2(φ, r) (4.22)

MSO2(φ1 ∧ φ2, r) = MSO2(φ1, r) ∧MSO2(φ2, r) (4.23)

MSO2(∃x . φ, r) = ∃x .MSO2(φ, r) (4.24)

MSO2(X, r) = X(r) (4.25)

MSO2(µX .φ, r) = ∀X . (∀r′ .MSO2(φ, r
′)→ X(r′))→ X(r) (4.26)

The case for MSO2(µX .φ, r) follows Theorem 2.1, which states that the least fixpoint of a
monotone function is the intersection of all of its pre-fixpoints. The same translation can be
used to show that LFP can be defined in SOL. As said, MSO2(φ, r) captures the intuition

77

that r matches φ. The top translation MSO(φ) captures the intuition that φ is valid iff it is
matched by all r. Therefore, we have the following theorem.

Theorem 4.3. For any Γ and φ, Γ ⊨ φ iff MSO(Γ) ⊨SOL MSO(φ).

Proof. It suffices to show that there exists a bijection between (S,Σ)-models M and
(SMSO, CMSO,ΠMSO)-models M ′ such that M ⊨ φ iff M ′ ⊨SOL MSO(φ). The bijection is
defined as follows:

1. M ′
s =Ms for all s ∈ S;

2. πσM ′ = {(a1, . . . , an, b) | b ∈ σM(a1, . . . , an)}.

To show that M ⊨ φ iff M ′ ⊨SOL MSO(φ), it suffices to show a ∈ |φ|M,ρ iff M ′, ρ[a/r] ⊨SOL

MSO2(φ), which follows by structural induction on φ. We only need to prove the cases for
MSO2(X) and MSO2(µX .φ) because the other cases are the same as the translation from
matching logic to predicate logic in [2, Section 10].

(Case MSO2(X, r)). We have a ∈ |X|M,ρ iff a ∈ ρ(X) iff M ′, ρ[a/r] ⊨SOL X(r).
(Case MSO2(µX .φ, r)). We have a ∈ |µX .φ|M,ρ iff a ∈ lfp (A 7→ |φ|M,ρ[A/X]) iff

a ∈
⋂
{A | |φ|M,ρ[A/X] ⊆ A} iff for every A, |φ|M,ρ[A/X] ⊆ A implies a ∈ A. Note

that for any fixed A, |φ|M,ρ[A/X] ⊆ A iff for every a, a ∈ |φ|M,ρ[A/X] implies a ∈ A, iff
(by the induction hypotheses) M ′, ρ[a/r, A/X] ⊨SOL ∀r′ .MSO2(φ, r

′) → X(r′). There-
fore, we have that “for every A, |φ|M,ρ[A/X] ⊆ A implies a ∈ A” is equivalent to “for
every A, M ′, ρ[a/r, A/X] ⊨SOL ∀r′ .MSO2(φ, r

′) → X(r′)”. The latter is equivalent to
M ′, ρ[a/r] ⊨SOL ∀X . (∀r′ .MSO2(φ, r

′)→ X(r′))→ X(r). QED.

As a closing remark, we point out that translating patterns to MSO introduces new
complexity to not only specifying properties but also reasoning about them. Such complexity
comes from the fact that during the translation new quantifiers are introduced, such as in
MSO2(σ(φ1, . . . , φ), r) and MSO2(µX .φ, r). Therefore, it is more difficult to reason about
the MSO translations than to directly reason about matching µ-logic patterns using Hµ.

78

Chapter 5: EXPRESSIVE POWER

In this chapter we study the expressive power of matching µ-logic. We will consider various
logics, calculi, and foundations of computation and show how to define them in matching
µ-logic as theories.

5.1 DEFINING RECURSIVE SYMBOLS

We know that in matching µ-logic, we can use µX .φ to specify a recursive set that satisfies
the equation X = φ, where the interesting case is when X has free occurrences in φ. For
example, µX . 3 ∨ plus(X,X) specifies the set of all nonzero multiples of 3, which is the
smallest set that includes 3 and is closed under plus . Intuitively, µX . 3 ∨ plus(X,X) defines
a constant symbol m3 ∈ Σλ,Nat by the following recursive definition:

m3 ∈ Σλ,Nat m3 =lfp 3 ∨ plus(m3,m3). (5.1)

Our goal is to generalize the above and define recursive symbols of any arities. For example,
we would like to define a unary symbol collatz ∈ ΣNat,Nat by the following recursive definition:

collatz (n) =lfp n ∨ (even(n) ∧ collatz (n/2)) ∨ (odd(n) ∧ collatz (3n+ 1)) (5.2)

Intuitively, collatz (n) captures the set of all numbers in the Collatz sequence starting from n,
where a Collatz sequence is obtained by repeating the following procedure: if the current
number is even then the next number is n/2; otherwise, the next number is 3n+ 1. However,
the µ operator in matching µ-logic can only be applied to set variables, not symbols, so the
following attempt is syntactically wrong:

collatz (n) = µσ(n) . n ∨ (even(n) ∧ σ(n/2)) ∨ (odd(n) ∧ σ(3n+ 1)) (5.3)

One possible solution is to extend matching µ-logic with recursive symbols and allow µ to
bind symbol variables, and not just set variables. We need to extend the syntax, semantics,
and proof system accordingly, similarly to how LFP extends FOL with predicate variables.
The other approach, which will be presented in this section, is to define recursive symbols using
axioms. After all, the proof rules (Pre-Fixpoint) and (Knaster Tarski) in Figure 4.1
are a direct incarnation of the Knaster-Tarski fixpoint theorem (Theorem 2.1). The latter
has been repeatedly demonstrated to serve as a solid if not the main foundation for recursion.

79

Therefore, matching µ-logic should be sufficient in practice for defining one’s desired approach
to recursion/induction/fixpoints as theories, just like how equality, membership, and functions
are defined as theories, as shown in Section 2.13.2.

Our definition of recursive symbols is based on the principle of currying-uncurrying [48, 49],
which is used in various settings (e.g., simply-typed lambda calculus [50]) as a means to reduce
the study of multiary functions to unary functions. The principle of currying-uncurrying gives
us a one-to-one correspondence between an n-ary symbol σ ∈ Σs1...sn,s with a set variable
σ : s1⊗ · · · ⊗ sn⊗ s. Here s1⊗ · · · ⊗ sn⊗ s is a sort whose carrier set is axiomatically defined
to be the product of the carrier sets of s1, . . . , sn, s, i.e., Ms1⊗···⊗sn⊗s =Ms1 × · · ·×Msn ×Ms.
Then, any recursive symbol from s1, . . . , sn to s can be defined using the µ operator and the
set variable σ : s1 ⊗ · · · ⊗ sn ⊗ s.

Definition 5.1. For sets Ms1 , . . . ,Msn ,Ms, the principle of currying-uncurrying means the
following isomorphism:

P(Ms1 × · · · ×Msn ×Ms)
curry−−−−⇀↽−−−−
uncurry

[Ms1 × · · · ×Msn → P(Ms)] (5.4)

given by

curry(α)(a1, . . . , an) = {b ∈Ms | (a1, . . . , an, b) ∈ α} (5.5)

uncurry(f) = {(a1, . . . , an, b) | b ∈ f(a1, . . . , an)}. (5.6)

for all α ⊆Ms1 × · · · ×Msn ×Ms, ai ∈Msi , 1 ≤ i ≤ n, and f : Ms1 × · · · ×Msn → P(Ms).

To use the principle of currying-uncurrying in matching µ-logic, we first need to define
product sets as theories.

Definition 5.2. For sorts s1, . . . , sn, we define the product sort s1 ⊗ · · · ⊗ sn with a symbol
set Σproduct and an axiom set Γproduct, where

Σproduct = {⟨_, . . . ,_⟩ ∈ Σproduct
s1...sn,s1⊗···⊗sn} ∪ {proji ∈ Σproduct

s1⊗···⊗sn,si | 1 ≤ i ≤ n} (5.7)

and Γproduct includes the following axioms:

(Function) ⟨_, . . . ,_⟩ : s1 × · · · × sn → s1 ⊗ · · · ⊗ sn (5.8)

(Function) proji : s1 ⊗ · · · ⊗ sn → si with 1 ≤ i ≤ n (5.9)

(Injectivity) ⟨x1, . . . , xn⟩ = ⟨y1, . . . , yn⟩ = x1 = y1 ∧ · · · ∧ xn = yn (5.10)

(Projection) proji(⟨x1, . . . , xn⟩) = xi with 1 ≤ i ≤ n (5.11)

80

(Product) ∃x1 . . . ∃xn . ⟨x1, . . . , xn⟩ (5.12)

Proposition 5.1. For M ⊨ Γproduct, there is an isomorphism Ms1⊗···⊗sn
i−⇀↽−
j
Ms1 × · · · ×Msn.

Proof. For ai ∈Msi , 1 ≤ i ≤ n, we define ⟨a1, . . . , an⟩M by

{⟨a1, . . . , an⟩M} = (⟨_, . . . ,_⟩)M(a1, . . . , an) (5.13)

where (⟨_, . . . ,_⟩)M : Ms1 × · · · ×Msn → P(Ms1⊗···⊗sn) is the interpretation of ⟨_, . . . ,_⟩ in
M . This is well-defined because of (Function), which states that ⟨_, . . . ,_⟩ is a function
and returns thus only singleton sets. Let j : Ms1×· · ·×Msn →Ms1⊗···⊗sn be a function defined
by j(a1, . . . , an) = ⟨a1, . . . , an⟩M for all ai ∈Msn , 1 ≤ i ≤ n. Then j is surjective because of
(Product). Furthermore, j is injective because of (Injectivity). Therefore, j is bijective
and has an inverse i, given by i(⟨a1, . . . , an⟩M) = (a1, . . . , an), for all ai ∈ Msn , 1 ≤ i ≤ n.
Thanks to this isomorphism, we feel free to write ⟨a1, . . . , an⟩M just as (a1, . . . , an). QED.

To define recursive symbols, we often consider the product sort s1 ⊗ · · · ⊗ sn ⊗ s, where
s1, . . . , sn are the argument sorts and s is the return sort. It is often convenient to add a
new application symbol _(_, . . . ,_) ∈ Σproduct

(s1⊗···⊗sn⊗s) s1...sn,s and include the following axioms
in Γproduct:

(Function) _(_, . . . ,_) : (s1 ⊗ · · · ⊗ sn ⊗ s)× s1 × · · · × sn → s (5.14)

(Application) p(x1, . . . , xn) = ∃y . y ∧ ⟨x1, . . . , xn, y⟩ ∈ p (5.15)

Intuitively, (Application) states that p(x1, . . . , xn) includes all y’s such that ⟨x1, . . . , xn, y⟩
matches p. By tacitly using the same syntax _(_, . . . ,_) for the application symbol given
above and the application operator in the matching µ-logic syntax, we blur their distinction.
In particular, if σ : s1 ⊗ · · · ⊗ sn ⊗ s is a set variable and φ1, . . . , φn have sorts s1, . . . , sn,
respectively, then σ(φ1, . . . , φn) is a well-formed pattern of sort s.

Now we are ready to define recursive symbols as recursive sets, which are definable using
the µ operator.

Definition 5.3. For a symbol σ ∈ Σs1...s1,s, we write σ(x1, . . . , xn) =lfp φ to mean the
following axiom:

σ(x1, . . . , xn) = (µσ : s1 ⊗ · · · ⊗ sn ⊗ s .∃x1 . . . ∃xn . ⟨x1, . . . , xn, φ⟩)(x1, . . . , xn) (5.16)

where the symbol σ ∈ Σs1...sn,s in φ is tacitly regarded as the set variable σ : s1⊗ · · · ⊗ sn⊗ s,

81

which is then bound by µ. We call σ ∈ Σs1...sn,s a recursive symbol and σ(x1, . . . , xn) =lfp φ

its recursive definition.

Recursive symbols can be used to define various inductive data structures and relations.
For example, in Sections 5.2 and 5.3, we show how to define LFP formulas and SL recursive
symbols using matching µ-logic recursive symbols. As for formal reasoning, Definition 5.3
is not the most convenient because it involves a lot of detail related to the construction
of the product sort. To reason about recursive symbols more easily, we generalize the
(Pre-Fixpoint) and (Knaster Tarski) proof rules and prove that they are derivable in
matching µ-logic, so we can reason about recursive symbols in the same way as the basic
least fixpoints µX .φ.

Theorem 5.1. Let Γ be a theory with a recursive symbol σ ∈ Σs1...sn,s defined by

σ(x1, . . . , xn) =lfp φ (5.17)

For any ψ such that

Γ ⊢ (∃z1 . . . ∃zn . z1 ∈ φ1 ∧ · · · ∧ zn ∈ φn ∧ ψ[z1/x1, . . . , zn/xn])

→ ψ[φ1/x1, . . . , φn/xn] (5.18)

for all φ1, . . . , φn, the following hold:

1. (Pre-Fixpoint): Γ ⊢ φ→ σ(x1, . . . , xn);

2. (Knaster Tarski): Γ⊢φ[ψ/σ]→ψ implies Γ⊢σ(x1,..., xn)→ψ, where φ[ψ/σ] is the
result of substituting all sub-patterns of the form σ(φ1, . . . , φn) in φ for ψ[φ1/x1, . . . , φn/xn].

Proof. See Section 5.15.1 QED.

5.2 DEFINING FOL WITH LEAST FIXPOINTS

Recall that FOL with least fixpoint (abbreviated LFP) extends FOL with predicate
variables in PV = {PV s1...sn}s1,...,sn∈S and the following grammar rules (see Definition 2.8):

LFP formulas φ ::= (syntax of FOL formulas) (5.19)

| P (ts1 , . . . , tsn) with P ∈ PV s1...,sn (5.20)

| [lfpP,x1 : s1...,xn : snφ](ts1 , . . . , tsn) with P ∈ PV s1...,sn (5.21)

82

We can define LFP in matching µ-logic by extending the theory ΓFOL for FOL in Definition 2.51
with the definitions and notation for recursive symbols in Section 5.1. Furthermore, we add
every predicate variable P ∈ PV s1...sn as a set variable P : s1 ⊗ · · · ⊗ sn ⊗ Formula and define
the following notation:

[lfpP,x1 : s1...,xn : snφ](ts1 , . . . , tsn) (5.22)

≡ (µP : s1 ⊗ · · · ⊗ sn ⊗ Formula .∃x1 : s1 . . . ∃xn : sn . ⟨x1, . . . , xn, φ⟩)(ts1 , . . . , tsn) (5.23)

Let us use ΓLFP to denote resulting theory. Note that ΓLFP only extends ΓFOL with the generic
definitions for recursive symbols and does not include any LFP-specific axioms.

Theorem 5.2. For any LFP formula φ, ⊨LFP φ iff ΓLFP ⊨ φ.

Proof. See Section 5.15.2. QED.

5.3 DEFINING SEPARATION LOGIC WITH RECURSIVE SYMBOLS

Separation logic (abbreviated SL) recursive symbols are a special instance of matching
µ-logic recursive symbols. More precisely, SL recursive symbols are matching µ-logic recursive
symbols whose return sort is Map—the sort of maps—defined in Definition 2.52. For example,
the following recursive definition of singly-linked lists

list(x) =lfp (x = nil) ∧ emp ∨ ∃y . (x ̸= nil) ∧ x 7→ y ∗ list(y) (5.24)

is a verbatim definition of a matching µ-logic recursive symbol list ∈ ΣMap
Nat,Map, without any

translation or encoding, thanks to the notation in Section 5.1.

Theorem 5.3. Let MMap be the standard map model in Definition 2.52. For every SL
recursive symbol P defined by P (x1, . . . , xn) =lfp ψ, we add P ∈ ΣMap

Nat ...Nat,Map as a matching
µ-logic recursive symbol defined by the same equation P (x1, . . . , xn) =lfp ψ. Let us still use
ΓSOL to denote the extended theory. Then for any SL formula φ with recursive symbols,
⊨SOL φ iff ΓSOL ⊨ φ.

Proof. See Section 5.15.3. QED.

5.4 DEFINING EQUATIONAL SPECIFICATIONS

Given that we can define equality and functions in matching logic even without the fixpoint
extension (see Section 2.13.2), it is not surprising that we can define equational specifications

83

as theories. Therefore, the point of this section is to formally state and prove an expected
result, and more importantly, to prepare for the definitions of term algebras and initial
algebras in Section 5.5.2.

Given an equational specification (S, F,E), we extend the theory ΓFOL for FOL in Defini-
tion 2.51 with the following notation:

∀V . ts = t′s ≡ ∀x1 : s1 . . . ∀xn : sn . ts =Formula
s t′s (5.25)

where V = {x1 : s1, . . . , xn : sn}. Then, all (S, F)-terms are patterns of the corresponding
sorts and all (S, F)-equations are patterns of sort Formula. Let ΓEqSpec = ΓFOL ∪ E be the
resulting theory for the equational specification (S, F,E).

Theorem 5.4. Under the above notation, for any equation e, the following are equivalent:
(1) ΓEqSpec ⊢ e; (2) ΓEqSpec ⊨ e; (3) E ⊨EQ e; (4) E ⊢EQ e.

Proof. We prove that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1). Note that (1) =⇒ (2) is the
soundness of equational reasoning; (3) =⇒ (4) is the completeness of equational deduction;
and (4) =⇒ (1) holds because matching µ-logic supports equational reasoning. Thus, we
only need to prove (2) =⇒ (3).

We show that for any (S, F,E)-algebra A, there exists a corresponding matching µ-logic
model M such that for any equation e, A ⊨EQ e iff M ⊨ e. We define the model M as follows:

1. the carrier set Ms = As for all s ∈ S, and MFormula = {⋆}, where ⋆ is a distinguished
dummy element;

2. fM(a1, . . . , an) = {fA(a1, . . . , an)} for all ai ∈Mi, 1 ≤ i ≤ n;

3. ⌈a⌉s′s =Ms′ for all a ∈Ms and s, s′ ∈ S.

Note that the above is the same model for FOL, which is known to yield the same semantics
as FOL for terms [2]. Furthermore, equality has the intended semantics in matching µ-logic
(Section 2.13.2). Therefore, A ⊨EQ e iff E ⊨ e, and we proved Theorem 5.4. QED.

5.5 DEFINING INITIAL ALGEBRA SEMANTICS

We start by defining term algebras in Section 5.5.1 and then proceed to defining initial
algebras in Section 5.5.2. We discuss induction principles in Section 5.5.3 and show that
induction principles can be derived as matching µ-logic theorems in Section 5.5.3.

84

5.5.1 Defining term algebras

Term algebras are a special case of initial algebras when there are no equations to restrict
the behaviors of the operations. Theorem 2.5 gives an equivalent characterization of initiality
in terms of the no-junk and no-confusion properties. We will define term algebras in matching
µ-logic by defining the no-junk and no-confusion properties.

Let us first consider the no-confusion property. When there are no underlying equations,
the no-confusion property takes the following simpler form:

Lemma 5.1. Let (S, F, ∅) be an equational specification with no equations. An F -algebra A
satisfies no-confusion iff (1) Af is injective for all f ∈ F , and (2) image(Af)∩ image(Af ′) = ∅
for all f ̸= f ′.

We can translate Lemma 5.1 into the following (No Confusion) axioms:

(No Confusion I) f(x1, . . . , xn) = f(x′1, . . . , x
′
n)→ x1 = x′1 ∧ · · · ∧ xn = x′n (5.26)

(No Confusion II) f(x1, . . . , xn) ̸= g(y1, . . . , ym) if f ̸= g (5.27)

Next, let us consider the no-junk property. An algebra satisfies no-junk iff its carrier sets
are the smallest sets closed under the operations in the signature, so we can define no-junk
using the µ operator. Let us look at some examples.

Example 5.1. Consider (S, F) where S = {Nat} and F = {zero ∈ Fϵ,Nat, succ ∈ FNat,Nat}.
We can define the carrier set of Nat as follows:

⊤Nat = µD . zero ∨ succ(D) (5.28)

Intuitively, the axiom states that ⊤Nat is the smallest set D that includes zero and is closed
under succ. This way, we precisely capture the set of natural numbers.

In the literature, the definition in Example 5.1 is known as single recursion or direct
recursion. Generally speaking, a many-sorted signature (S, F) may include many sorts and
operations, which often causes mutual recursion. We will convert mutual recursion to single
recursion.

Example 5.2. Let S = {s1, s2} and F = {a1 ∈ Fϵ,s1 , a2 ∈ Fϵ,s2 , f ∈ Fs1 s2,s2 , g ∈ Fs1 s2,s1}.
Conceptually, we would like to use the µ operator to define the mutual recursion over ⊤s1
and ⊤s2 as follows:

⟨⊤s1 ,⊤s2⟩ = µ⟨D1, D2⟩ . ⟨a1 ∨ g(D1, D2), a2 ∨ f(D1, D2)⟩ (5.29)

85

However, in matching µ-logic, µ can only bind a set variable, and not a structure such as
⟨D1, D2⟩. To correct the definition, we replace ⟨D1, D2⟩ by a set variable D over the pair sort
s1 ⊗ s2 and use the projection operation proj in Definition 5.2 to restore D1 and D2. The
corrected definition is

⟨⊤s1 ,⊤s2⟩ = µD . ⟨a1 ∨ g(D1, D2), a2 ∨ f(D1, D2)⟩ (5.30)

where D1 ≡ proj1(D), D2 ≡ proj2(D), and ⟨⊤s1 ,⊤s2⟩ = Φ is a notation for two axioms:
⊤s1 = proj1(Φ) and ⊤s2 = proj2(Φ). Mutual recursion over s1 and s2 is thus reduced to single
recursion over s1 ⊗ s2. In general, mutual recursion over s1, . . . , sn can be reduced to single
recursion over s1 ⊗ · · · ⊗ sn.

Definition 5.4. Let (S, F) be a many-sorted signature where Fϵ,s ̸= ∅ for any s ∈ S. We
define

(No Junk) ⟨⊤s1 , . . . ,⊤sn⟩ = µD . ⟨
∨

f∈Fw,s1 ,w∈S∗

f Dw , . . . ,
∨

f∈Fw,sn ,w∈S∗

f Dw⟩︸ ︷︷ ︸
denoted by F (D)

(5.31)

where D is a set variable of sort s1 ⊗ · · · ⊗ sn and ⟨⊤s1 , . . . ,⊤sn⟩ = F (D) is a notation for n
axioms: ⊤si = proji(F (D)) for 1 ≤ i ≤ n.

Term algebras can then be precisely axiomatized by the (No Confusion) and (No Junk)
axioms.

It is known that term algebras have a complete FOL axiomatization, such that for any
FOL sentence φ, either φ or ¬φ can be proved [51, 52]. Together with the completeness of
FOL, we know that it is decidable to determine whether a given FOL sentence holds in a
term algebra. The complete FOL axiomatization of term algebras is a beautiful result but
understandably weaker than our result. Firstly, the FOL axiomatization does not precisely
capture term algebras, but only up to elementary equivalence. In other words, there exist
(nonstandard) models of the FOL axiomatization that are not term algebras, but merely
satisfy the same FOL sentences as term algebras. Indeed, the FOL axiomatization allows
arbitrarily large models due to the Löwenheim-Skolem theorem [53], while term algebras
must be countable. In addition, the FOL axiomatization is not extensible. For example,
one cannot take the complete axiomatization of zero and succ and extend it with plus, mult,
and their Peano (equational) axioms, and hope to get a complete FOL axiomatization of
natural numbers with addition and multiplication—the completeness is lost in the extension.
In contrast, our matching µ-logic axiomatization of term algebras using (No Junk) and (No

86

Confusion) precisely captures term algebras. We can extend it with equations to further
define initial algebras, which will be discussed in Section 5.5.2.

5.5.2 Defining initial algebras

Let (S, F,E) be an equational specification. Recall that ≃E is the smallest relation that
includes the identity relation and all the equations in E, and is closed under converse,
composition, and congruence w.r.t. all the operations in F (Proposition 2.1). Thus, we can
define ≃E using the µ operator.

Specifically, for every s ∈ S, we introduce a constant symbol Eqs ∈ Σϵ,s⊗s or simply Eq,
and add the following axioms:

φ1 ⊂∼ φ2 ≡ ∀x1 . x1 ∈ φ1 → ∃x2 . x2 ∈ φ2 . ⟨x1, x2⟩ ∈ Eq (5.32)

φ1 ≃ φ2 ≡ φ1 ⊂∼ φ2 ∧ φ2 ⊂∼ φ1 (5.33)

R−1 ≡ converseRel R (5.34)

R1 ◦R2 ≡ composeRel R1 R2 (5.35)

(Identity) idRel =
∨
s∈S

∃x : s . ⟨x, x⟩ (5.36)

(Converse) R−1 = ∃x .∃y . ⟨y, x⟩ ∧ (⟨x, y⟩ ∈ R) (5.37)

(Composition) R1 ◦R2 = ∃x .∃y .∃z . ⟨x, z⟩ ∧ (⟨x, y⟩ ∈ R1 ∧ ⟨y, z⟩ ∈ R2) (5.38)

(Congruence) congRel R =
∨

f∈Fs1...sn,s

∃x1, y1 : s1 . . . ∃xn, yn : sn . (5.39)

⟨f(x1, . . . , xn), f(y1, . . . , yn)⟩ ∧
∧

1≤i≤n

⟨xi, yi⟩ ∈ R (5.40)

(Equivalence) Eq = µR . idRel ∨R−1 ∨ (R ◦R) ∨ (congRel R) ∨
∨

(∀V . t=t′)∈E

∃V . ⟨t, t′⟩

(5.41)

Here, idRel is the identity relation; R−1 is the converse relation of R; R1 ◦R2 is composition of
R1 and R2; and congRel R is the relation obtained by propagating R through all operations
in F . The axiom (Equivalence) states that Eq is the smallest relation that includes idRel

and all equations in E, and is closed under converse, composition, and congruence. We write
φ1 ⊂∼ φ2 to mean that φ1 is contained in φ2 modulo Eq, and φ1 ≃ φ2 to mean that φ1 and
φ2 are equal modulo Eq. This way, initial E-algebras are precisely captured by the above
axioms. Note that we distinguish two different equalities: one is the pure syntactic equality
(written t = t′) and the other is ≃E-equivalence (written t≃ t′). The latter corresponds to

87

the equality in the quotient term algebra TF/E.

5.5.3 Deriving induction principles as matching µ-logic theorems

Initial algebra reasoning is a synonym for induction. Various inductive techniques in
formal program verification flourished in the 1960s [54, 55, 56, 57, 58, 59, 60]. Later, it was
discovered that initiality, or more precisely, the no-junk property is what powers induction
and the induction-based proof techniques in initial algebras [24, Proposition 16]. If an algebra
A satisfies no-junk, all elements of A can be represented by some terms, and thus the (unique)
morphism fA : TF/E → A is surjective. Inductive principles on TF/E are then mapped to A
through fA, whose surjectivity guarantees that all elements in A are covered in the inductive
reasoning. Various induction principles have been adopted as proof-theoretical alternatives
to initiality (see, e.g., [24, Section 4.4]) and have led to practical tools [43].

In Section 5.5.1, we define the no-junk property using (No Junk). Matching µ-logic also
has one proof rule—(Knaster Tarski)—which is dedicated to fixpoint reasoning. In what
follows, we show that inductive reasoning can be obtained by combining (No Junk) and
(Knaster Tarski). That is to say, induction is a special case of matching µ-logic reasoning
in the theory of initial algebras:

Induction = (No-Junk) + (Knaster Tarski) (5.42)

Let us consider natural numbers built from zero and succ. We have two Peano axioms:
ENat = {∀x :Nat . plus(x, zero)≃ x and ∀x, y :Nat . plus(x, succ(y))≃ succ(plus(x, y))}. Let us
prove the following property:

∀y :Nat . plus(zero, y)≃ y (5.43)

Note that (5.43) does not hold in an arbitrary algebra that satisfies the Peano axioms.
Consider, for example, an algebra with only two elements {0, ⋆}, where zero is interpreted as
0, succ is interpreted as the identity function on {0, ⋆}, and plus is interpreted as the binary
function that returns its first argument. In this algebra, both axioms hold, but not (5.43).

Property (5.43) holds if we consider the initial algebra of ENat. However, by default,
initial algebra semantics does not distinguish constructors and defined functions. Instead,
it treats them equally as operations. It results in unnecessarily tedious inductive proofs,
because induction cases are created for all operators, even for defined functions (see, e.g., [61,
Section 2.4]). For example, when we prove (5.43) and apply inductive reasoning on y, we

88

have three cases rather than two, where the extra one is for plus. This is not expected. To
carry out the usual inductive reasoning with only cases for zero and succ, we need to prove
that plus is a defined function, i.e., it does not effectively create new (ground) terms (Step 1).
After that, we apply structural induction on (5.43) w.r.t. zero and succ only (Step 2), and
prove all the sub-goals (Step 3).

In many initial algebra semantics papers [62, 63, 64, 65, 66, 67] and tools [43], Step 1 is
proved by noting that the two Peano equations, when oriented from left to right, become
rewrite rules that reduce the size of the sub-terms whose top-level operation is plus. Any
ground term that contains plus can be rewritten to a canonical term without plus. Therefore,
plus is a defined function. This technique, called sufficient completeness, goes back to [68]
and is further developed and implemented in the above-mentioned works.

In practice, inductive equational theorem provers allow users to explicitly declare construc-
tors and defined functions, following one (or both) of the following aesthetically different but
ultimately equivalent approaches:

1. To declare a sub-signature of constructors (supported by Maude [43] and proof assistants
such as Coq [11]).

2. To define a sub-specification of constructors and import it in a “protected” mode
(supported by OBJ [69], CafeOBJ [70], and Maude [43]).

Either way, initiality is defined only for constructors. Defined functions must be proved
well-defined. Both approaches are extensions to the vanilla equational specifications in
Section 2.5: (1) adds constructor signatures and (2) adds a module system. What is not an
extension is the following axiomatic matching µ-logic approach, where the statement “plus is
a defined function” is expressed and derived within matching µ-logic: 2

Theorem 5.5. ⊢ (µD . zero ∨ succ(D) ∨ plus(D,D))︸ ︷︷ ︸
equals to ⊤Nat by axiom (No Junk)

≃ (µD . zero ∨ succ(D))

That is, the smallest set generated by {zero, succ, plus} equals to the one generated by
{zero, succ}, modulo ENat. Theorem 5.5, which accomplishes Step 1, is a theorem that is
formally derivable using the existing proof system, requiring no reasoning outside the logic,
which is in sharp contrast to the classical initial algebra semantics approaches and tools.

An advantage of specifying defined functions by theorems (such as Theorem 5.5) is that
we can reason about abstract datatypes (ADTs) using different but equivalent constructor

2A similar result holds for the general case, when E includes equations for constructors and E′ ⊇ E
further includes those for defined functions. The well-definedness of the defined functions can be proved by
showing that E-equality is preserved, i.e., ≃E equals to ≃E′ , where ≃E and ≃E′ are least fixpoint patterns
as the right- and left-hand sides of Theorem 5.5.

89

sets. For example, lists can be defined using nil and cons, or using nil, one-element lists, and
concatenation. Such flexibility is not possible in frameworks that enforce explicit specification
of the constructors for each ADT.

After Step 1, we carry out Step 2, which is to apply structural induction on y in (5.43). It
generates two sub-goals:

plus(zero, zero)≃ zero (5.44)

∀z :Nat . plus(zero, z)≃ z→ plus(zero, succ(z))≃ succ(z) (5.45)

where (5.44) is the base case and (5.45) is the induction case. In matching µ-logic, the above
inductive proof is carried out, within the logic, using (Knaster Tarski). Specifically, let

Ψ ≡ ∃y :Nat . y ∧ (plus(zero, y)≃ y) (5.46)

be the pattern that is matched by all y that satisfy (5.43). Then,

⊢ ∀y :Nat . plus(zero, y)≃ y iff

⊢ ⊤Nat → Ψ iff

⊢ (µD . zero ∨ succ(D))→ Ψ if // by (Knaster Tarski) (5.47)

⊢ zero→ Ψ and ⊢ succ(Ψ)→ Ψ iff

⊢ plus(zero, zero)≃ zero and

⊢ ∀y :Nat . plus(zero, y)≃ y → plus(zero, succ(y))≃ succ(y)

Finally, we carry out Step 3 and prove (5.44) and (5.45) by equational reasoning, which is
a special instance of matching logic reasoning. Therefore, we formally derived (5.43) as a
matching µ-logic theorem using the proof system.

Theorem 5.6. Under the above notation, for any pattern Ψ of sort Nat,

zero→ Ψ succ(Ψ)→ Ψ

⊤Nat → Ψ (5.48)

Proof. Use (Knaster Tarski) and the definition of ⊤Nat. QED.

Theorem 5.6 is the logical incarnation of Peano induction in matching µ-logic, where Ψ is
any property that we want to (inductively) prove for natural numbers. The first premise,
⊢ zero → Ψ, states that zero satisfies property Ψ. The second premise states that the
following induction case holds:

90

Lemma 5.2. Under the above notation, ⊢ succ(Ψ)→ Ψ iff ⊢ ∀x :Nat . (x ∈ Ψ→ succ(x) ∈
Ψ). Note that the right-hand side is exactly the induction case of Peano induction.

Intuitively, the right-hand side states that Ψ is closed under succ; that is, if we start with
any x that satisfies Ψ and apply succ to it, succ(x) still satisfies Ψ. Hence, if we apply succ

to Ψ, which, by definition, is matched by all the numbers that satisfy Ψ, the result succ(Ψ)

is still included by Ψ. And that is exactly the left-hand side.
It is not a coincidence that the proof rule (Knaster Tarski) has such a close connection

to induction principles. In our view, induction principles are instances of the Knaster-Tarski
fixpoint theorem (Theorem 2.1, of which (Knaster Tarski) is a logical encoding. It is
particularly interesting to see that such a connection can be so elegantly expressed within
matching µ-logic as formal proofs, by the following theorem.

Theorem 5.7. Under the notation in Section 5.5.1, for any pattern Ψ of sort s1 ⊗ · · · ⊗ sn,

F Ψ→ Ψ

⟨⊤s1 , . . . ,⊤sn⟩ → Ψ (5.49)

which is an abbreviation for the following:∨
f∈Fw,s1 ,w∈S∗

f Ψw → Ψs1 · · ·
∨

f∈Fw,sn ,w∈S∗

f Ψw → Ψsn

⊤s1 → Ψs1 and ⊤s2 → Ψs2 and . . . and ⊤sn → Ψsn

where Ψsi ≡ proji(Ψ) is the i-th projection of Ψ and f Ψw ≡ (f Ψs′1
· · · Ψs′m) for w = s′1 . . . s

′
m.

Proof. Use (Knaster Tarski) and (No Junk). QED.

To conclude, initial algebras can be precisely captured by matching µ-logic by defining
the no-junk and no-confusion properties. Inductive reasoning is a special case of matching
µ-logic reasoning in the theory of initial algebras, and induction principles can be derived as
matching µ-logic theorems using the proof system.

5.6 DEFINING SECOND-ORDER LOGIC

To define second-order logic (SOL), we need to define powersets. More specifically, for sorts
s1, . . . , sn we define a new sort 2s1⊗···⊗sn , called the power sort of s1, . . . , sn, with the intuition
that M2s1⊗···⊗sn = P(Ms1 × · · · ×Msn), which is the set of relations over Ms1 , . . . ,Msn . That

91

is to say, every element of sort 2s1⊗···⊗sn is a relation over s1 × · · · × sn. Then, we can reduce
second-order quantification over s1 × · · · × sn to first-order quantification over 2s1⊗···⊗sn .

We first show the definition of powersets in Section 5.6.1. Then we show the definition of
monadic SOL in Section 5.6.2, where we reduce (monadic) second-order quantification over
one sort s to first-order quantification over 2s. Finally, we consider full SOL in Section 5.6.

5.6.1 Defining powersets

Matching µ-logic has set variables that range over the subsets of the underlying carrier
set(s). Recall that M ⊨ φ iff |φ|M,ρ =M for all ρ. This means that if an axiom φ has free
set variables, then they are, semantically speaking, universally quantified. This way, we can
write matching µ-logic axioms that have the same expressive power as monadic SOL, where
all predicate variables are universally quantified at the top. We can use this feature to define
powersets.

Definition 5.5. Let s be a sort. We define a new sort 2s called the power sort of s and
a symbol extension ∈ Σ2s,s called the extension symbol. We use α, β, . . . to denote element
variables of 2s. We define the following axioms:

(Powerset) ∃α : 2s . extension(α) = X : s (5.50)

(Extensionality) ∀α : 2s .∀β : 2s . extension(α) = extension(β)→ α = β (5.51)

Note that X : s is a free set variable in (Powerset).

To understand Definition 5.5, let us consider an arbitrary model M where Ms and M2s are
the carrier sets of s and 2s, respectively, and extensionM : M2s → P(Ms) is the interpretation
of extension in M . The axiom (Powerset) states that for any X ⊆Ms there exists there
exists α ∈ M2s such that extensionM(α) = X. In other words, extensionM is surjective. On
the other hand, (Extensionality) states that extensionM is injective. Therefore, extensionM
is a bijection from M2s to P(Ms). Its reverse, called intension, is given by

intension(φs) ≡ ∃α : 2s . α ∧ (extension(α) = φs) (5.52)

Note that intension(φ) is a singleton pattern, i.e., it is matched by exactly one element. This
is guaranteed by (Extensionality).

Note the difference between α and extension(α). The former is an element variable of sort
2s and is matched by one element in M2s , which, according to the bijection above, represents

92

a set of elements in Ms. The latter is a pattern of sort s, which also represents a set of
elements in Ms that match it. The difference is that α is regarded as an element while
extension(α) is regarded as a set. The term “extension” has a similar meaning in logic and
philosophy; an extension of a concept consists of the things to which it applies. Here, we see
α as a concept and extension(α) as its extension.

The above definition of powersets is not possible in FOL, because by the Löwenheim-Skolem
theorem [53], if a FOL theory has infinite models, then it has a countable model. However,
using powersets, we can enforce uncountable models by first enforcing an infinite model and
considering its powerset. For example, we can define a sort Nat with two functions zero and
succ, and define their injectivity axioms zero ̸= succ(x) and succ(x) = succ(y)→ x = y. These
axioms enforce infinite models because the following infinitely-many terms zero, succ(zero),
succ(succ(zero)), etc., must be different. If powersets could been completely axiomatized
in FOL, then we could define the power sort 2Nat, whose carrier set must be uncountable,
contradicting the Löwenheim-Skolem theorem. The reason why powersets can be precisely
defined in matching µ-logic is because matching µ-logic has set variables, and by writing
axioms with free set variables, we obtain the expressive power of (monadic) universal second-
order quantification.

5.6.2 Defining monadic SOL

Monadic SOL, abbreviated as MSO, is the instance of SOL with only unary/monadic
predicate variables. Let us fix a MSO signature (S,C,Π) where S is a set of sorts, C is
an S-indexed set of constant symbols, and Π is an S∗-indexed set of predicate symbols.
Let EV = {EV s}s∈S be an S-indexed set of element variables and PV = {PV s}s∈S be an
S-indexed set of unary predicate variables.

We define the corresponding matching µ-logic signature (SMSO,ΣMSO) and theory ΓMSO

for MSO. Let

SMSO = S ∪ {2s | s ∈ S} ∪ {Formula} (5.53)

ΣMSO = Σpowersort ∪ C ∪ Π (5.54)

ΓMSO = Γpowersort ∪ Γfunction(C) ∪ Γpredicate(Π) (5.55)

That is, SMSO includes all the sorts in S and their corresponding power sorts, plus a
distinguished sort Formula for MSO formulas. The symbol set ΣMSO includes the necessary
symbols for power sorts and all the constant and predicate symbols of MSO. The theory
ΓMSO includes the necessary axioms for power sorts, the function axioms for the constant

93

symbols in C, and the predicate axioms for the predicate symbols in Π.
Next, we show that MSO formulas are patterns of sort Formula. We include all unary

predicate variables in PV as matching µ-logic element variables of the corresponding power
sorts. More specifically, for every R ∈ PV s, we add R : 2s or simply R as a matching µ-logic
element variable of sort 2s. Then, we define the following notations:

R(ts) ≡ ts ∈Formula
s extension(R) with R ∈ PV s and ts is a term (5.56)

∃R .φ ≡ ∃R : 2s . φ with R ∈ PV s (5.57)

Under the above notation, all MSO formulas are patterns of sort Formula.

Theorem 5.8. For any MSO formula φ, ⊨SOL φ iff ΓMSO ⊨ φ.

Proof. Note that there is a one-to-one correspondence between the SOL models and the
matching µ-logic ΓMSO-models. For any SOL model M = ({Ms}s∈S, {cM}c∈C , {πM}π∈Π), we
define the corresponding matching µ-logic model M ′ = ({M ′

s}s∈SMSO , {σM ′}σ∈ΣMSO) where

1. M ′
s =Ms for s ∈ S;

2. M ′
2s = P(Ms);

3. M ′
Formula = {⋆};

4. cM ′ = {cM} for c ∈ C;

5. πM ′(as1 , . . . , asn) = {⋆} iff πM(as1 , . . . , asn) holds, for π ∈ Πs1...sn and asi ∈ Msi for
1 ≤ i ≤ n.

6. extensionM ′(As) = As for As ⊆Ms.

Note that (2) and (6) are enforced by the axioms for power sorts. By structural induction,
we can show that M,ρ ⊨SOL φ iff |φ|M ′,ρ = {⋆}, for any MSO formula φ. Note that
the FOL cases have been considered in Section 2.13.2, so here we only need to consider
two cases: φ has the form R(ts) or ∃R .φ1. If φ has the form R(ts), M,ρ ⊨SOL R(ts) iff
ρ(R)(ρ̄(ts)) holds, iff |ts|M ′,ρ ∈ ρ(R), iff |ts ∈ extension(R)|M ′,ρ = {⋆} by the semantics of ∈,
iff |R(ts)|M ′,ρ = {⋆}. If φ has the form ∃R .φ, M,ρ ⊨SOL ∃R .φ1 iff there exists αR ⊆ Ms

such that M,ρ[αR/R] ⊨SOL φ1, iff there exists αR ∈M ′
2s such that |φ1|M ′,ρ[αR/R] = {⋆} by the

induction hypothesis, iff |∃R .φ1|M ′,ρ = {⋆}. Since M and ρ are arbitrarily chosen, ⊨SOL φ iff
ΓMSO ⊨ φ for any MSO formula φ. QED.

94

5.6.3 Defining full SOL

We extend Theorem 5.8 to full SOL, by allowing predicate variables of any arities. The
idea is similar. For any predicate variable R of sort s1 × · · · × sn, we add it as an element
variable of sort 2s1⊗···⊗sn . Then, second-order quantification over R of sort s1 × · · · × sn

becomes first-order quantification over (element variable) R of the power sort 2s1⊗···⊗sn . This
is because for any matching µ-logic model M , M2s1⊗···⊗sn is isomorphic to P(Ms1×· · ·×Msn),
which is exactly the set of relations over Ms1 , . . . ,Msn .

Let us fix a SOL signature (S,C,Π). Let EV = {EV s}s∈S be an S-indexed set of element
variables and PV = {PV s}s∈S be an S+-indexed set of predicate variables. The corresponding
matching µ-logic signature (SSOL,ΣSOL) and theory ΓSOL for SOL are defined as follows:

SSOL = S ∪ {2s1⊗···⊗sn | s1, . . . , sn ∈ S, n ≥ 1} ∪ {Formula} (5.58)

ΣSOL = Σpowersort ∪ C ∪ Π (5.59)

ΓSOL = Γpowersort ∪ Γfunction(C) ∪ Γpredicate(Π) (5.60)

Furthermore, for every R ∈ PV s1...sn , we add it as a matching µ-logic element variable
R : 2s1⊗···⊗sn or simply R, and define the following notation:

R(ts1 , . . . , tsn) ≡ ⟨ts1 , . . . , tsn⟩ ∈Formula
s1⊗···⊗sn extension(R) (5.61)

∃R .φ ≡ ∃R : 2s1⊗···⊗sn . φ (5.62)

Then all SOL formulas are patterns of sort Formula.

Theorem 5.9. For any SOL formula φ, ⊨SOL φ iff ΓSOL ⊨ φ.

Proof. The proof is similar to Theorem 5.8. We show that M,ρ ⊨SOL φ iff |φ|M ′,ρ = {⋆},
where M ′ is the corresponding matching µ-logic model of a given SOL model M . The proof is
also by structural induction on φ, and we only need need to consider one more case, which is
when φ has the form R(ts1 , . . . , tsn) for R ∈ PV s1...sn . In this case, M,ρ ⊨SOL R(ts1 , . . . , tsn)

iff ρ(R)(ρ̄(ts1), . . . , ρ̄(tsn)) holds, iff |⟨ts1 , . . . , tsn⟩|M ′,ρ ∈ |R|M ′,ρ, iff |R(ts1 , . . . , tsn)|M ′,ρ = {⋆}.
All the other cases are the same as Theorem 5.8. QED.

5.7 DEFINING TRANSITION SYSTEMS

We show how to define transition systems in matching µ-logic. Let L be a label set. An
L-labeled transition system is a tuple T = (S, { a−−→}a∈L), where a−−→ ⊆ S × S is a binary

95

transition relation for every a ∈ L. Let us define the corresponding matching µ-logic signature
(STS,ΣTS) for L-labeled transition systems as follows:

STS = {State} (5.63)

ΣTS = {•a ∈ ΣTS
State,State | a ∈ L} (5.64)

Here, •a is a unary symbol, called (one-path) next, which captures the transition relation
a−−→, with the intuition that s ∈ •a(s′) iff s

a−−→ s′ for s, s′ ∈ S. When a is not important
or we only consider unlabeled transition systems, we drop the subscript and simply write
•a ∈ ΣTSState, State. In other words, there is a one-to-one correspondence between L-labeled
transition systems and (STS,ΣTS)-models, given as follows. For every T = (S, { a−−→}a∈L), we
can define a corresponding (STS,ΣTS)-model M with MState = S and M

(
a−→)

(s′) = {s ∈ S |
s

a−−→ s′} for s′ ∈ S.
It may be a little counterintuitive that the “one-path next” symbol •a returns all the

predecessors of a given state. This is because the “next” semantics happens on patterns, not
on states. Let us look at the following state transitions:

· · · s
a−−→ s′

a−−→ s′′ · · · // states
•a•aφ •aφ φ // patterns

Suppose s′′ satisfies, or matches φ. Then it is natural that s′, which is a predecessor of s′′,
matches •aφ, because φ holds in one of the next states of s′. Similarly, s matches •a•aφ
because φ holds in one of the next, next states. Because we want •aφ to mean that “φ holds
next”, the interpretation function M

(
a−→)

must take us backward in terms of state transitions.
The dual of •aφ is ◦aφ, called all-path next, defined by ◦aφ ≡ ¬•a¬φ. Other derived

operators are as follows:

“eventually” ⋄a φ ≡ µX . φ ∨ •aX (5.65)

“always” □aφ ≡ νX . φ ∧ ◦aX (5.66)

“until” φ1 Ua φ2 ≡ µX . φ2 ∨ (φ1 ∧ •aX) (5.67)

“well-founded” WFa ≡ µX . ◦aX // no infinite paths (5.68)

Again, we feel free to drop the subscript a when it is not important or we only consider
unlabeled transition systems.

Proposition 5.2. Let S be a set of states and → ⊆ S × S be a transition relation. Let M be
the corresponding (STS,ΣTS)-model, then

96

1. s ∈ |•φ|M,ρ iff there exists t ∈ S such that s → t and t ∈ |φ|M,ρ; in particular,
s ∈ |•⊤|M,ρ iff s is not a deadlock, i.e., s has a successor;

2. s ∈ |◦φ|M,ρ iff for all t ∈ S such that s→ t, t ∈ |φ|M,ρ; in particular, s ∈ |◦⊥|M,ρ iff s

is a deadlock;

3. s ∈ | ⋄ φ|M,ρ iff there exists t ∈ S such that s→∗ t, t ∈ |φ|M,ρ;

4. s ∈ |□φ|M,ρ iff for all t ∈ S such that s→∗ t, t ∈ |φ|M,ρ;

5. s ∈ |φ1 U φ2|M,ρ iff there exists n ≥ 0 and t1, . . . , tn ∈ S such that s→ t1 → · · · → tn,
tn ∈ |φ2|M,ρ, and s, t1, . . . , tn−1 ∈ |φ1|M,ρ;

6. s ∈ |WF|M,ρ iff s is well-founded, i.e., there is no infinite sequence t1, t2, · · · ∈ S with
s→ t1 → t2 → . . . ;

where (→∗) =
⋃
i≥0(→i) is the reflexive transitive closure of →.

5.8 DEFINING MODAL µ-CALCULUS

Modal µ-calculus is an instance of matching µ-logic when we fix the signature to be
(STS,ΣTS) in Section 5.7 and let Γµ = ∅ be the empty theory. We add all atomic propositions
of modal µ-calculus as set variables, then all modal µ-calculus formulas are patterns of sort
State.

Theorem 5.10. The following properties are equivalent for all modal µ-calculus formulas
φ: (1) ⊨µ φ; (2) ⊢µ φ; (3) Γµ ⊢ φ; (4) Γµ ⊨ φ; (5) M ⊨ φ for all ΣTS-models M such that
M ⊨ Γµ; (6) T ⊨µ φ for all transition systems T .

Proof. The proof is straightforward. (1) =⇒ (2) is by Theorem 2.6; (2) =⇒ (3) is because all
modal µ-calculus proof rules in Figure 2.3 are derivable in matching µ-logic (Proposition 3.2);
(3) =⇒ (4) is by Theorem 4.1; follows by the soundness of matching µ-logic. (4) =⇒ (5)
is by definition; (5) =⇒ (6) is by proving that for any transition system T , T, a ⊨Lµ φ iff
a ∈ |φ|M,ρ, where M is the corresponding ΣTS-model; this is proved by applying structural
induction on φ; Finally, (6) =⇒ (1) follows by definition. QED.

Therefore, modal µ-calculus with multiple modalities can be regarded as an instance
of matching µ-logic where the signature is ΣTS and the theory Γµ is empty. It is worth
mentioning that modal µ-calculus considers only unary modal modalities and they are only
required to obey the usual (K) and (N) rules, while matching µ-logic allows polyadic and even

97

many-sorted symbols while still obeying the desired (K) and (N) rules (see Proposition 3.2),
allows arbitrary further constraining axioms in theories, and also allows quantification over
element variables and many-sorted universes. It thus suggests that matching µ-logic may
offer a unifying playground to specify and reason about transition systems, by means of
ΣTS-theories/models. We can define various temporal modalities and dynamic operations as
notation using the basic “one-path next” symbol • ∈ ΣTS and the µ operator, without a need
to extend the logic. We can restrict the underlying transition systems using axioms, without
a need to modify or extend the proof system. In Sections 5.9 to 5.11, we show that by adding
proper axioms and introducing good notation, we can define various logics for specifying
and reasoning about dynamic behaviors of programs and computing systems, such as linear
temporal logic (LTL), computation tree logic (CTL), dynamic logic (DL), and reachability
logic (RL).

5.9 DEFINING TEMPORAL LOGICS

Since matching µ-logic can define modal µ-calculus, it is not surprising that it can also
define various temporal logics such as LTL and CTL as theories whose axioms constrain the
underlying transition relations. What is interesting, in our view, is that the resulting theories
are simple, intuitive, and faithfully capture both the semantics and formal proofs of these
temporal logics.

5.9.1 Defining infinite-trace LTL

We have seen the syntax and semantics of infinite-trace LTL in Section 2.9.1. Note that
the infinite-trace LTL syntax, namely the following

φ ::= p ∈ AP | φ ∧ φ | ¬φ | ◦φ | φ U φ (5.69)

has already been subsumed by matching µ-logic. As for models, infinite-trace LTL requires
infinite traces, so the underlying transition relations are linear (i.e., s T−→ s′ and s

T−→ s′′

implies s′ = s′′) and infinite (i.e. deadlock-free: for every s there is s′ such that s T−→ s′). To
capture these two characteristics, we add two axioms:

(Inf) •⊤ (Lin) •X → ◦X (5.70)

98

and denote the resulting ΣTS-theory as ΓinfLTL. Note that by (Substitution) in Figure 4.1
we can prove from axiom (Lin) that •φ → ◦φ for all patterns φ. Intuitively, (Inf) forces
all states s to have at least one successor, and thus all traces can be extended to an infinite
trace, and (Lin) forces all states s to have only a linear future.

Theorem 5.11 shows that ΓinfLTL captures the semantics and formal proofs of infinite-trace
LTL.

Theorem 5.11. The following properties are equivalent for all infinite-trace LTL formulas
φ: (1) ⊢infLTL φ; (2) ⊨infLTL φ; (3) ΓinfLTL ⊢ φ; (4) ΓinfLTL ⊨ φ.

Proof. See Section 5.15.5. QED.

Therefore, infinite-trace LTL can be regarded as a theory containing two axioms, (Inf)
and (Lin), over the same signature ΣTS for transition systems.

5.9.2 Defining finite-trace LTL

We have seen the syntax and semantics of finite-trace LTL in Section 2.9.2. Note that the
finite-trace LTL syntax, namely the following

φ ::= p ∈ AP | φ ∧ φ | ¬φ | ◦φ | φW φ (5.71)

can be defined in matching µ-logic by introducing the following notation for W :

“weak until” φ1 W φ2 ≡ µX .φ2 ∨ (φ1 ∧ ◦X). (5.72)

As for models, finite-trace LTL requires finite traces, so the underlying transition relations
are linear and finite (i.e., there is no infinite trace). To capture both characteristics we add
two axioms:

(Fin) WF ≡ µX . ◦X (Lin) •X → ◦X (5.73)

and call the resulting ΣTS-theory ΓfinLTL. Intuitively, (Fin) forces all states to be well-founded,
meaning that there is no infinite execution trace in the underlying transition systems.

Theorem 5.12. The following properties are equivalent for all finite-trace LTL formula φ:
(1) ⊢finLTL φ; (2) ⊨finLTL φ; (3) ΓfinLTL ⊢ φ; (4) ΓfinLTL ⊨ φ.

Proof. See Section 5.15.6. QED.

99

Therefore, finite-trace LTL can be regarded as a theory containing two axioms, (Fin) and
(Lin), over the same signature ΣTS for transition systems.

5.9.3 Defining CTL

We have seen the syntax and semantics of CTL in Section 2.9.3. Note that the CTL syntax,
namely the following

φ ::= p ∈ AP | φ ∧ φ | ¬φ | AXφ | EXφ | φ AU φ | φ EU φ (5.74)

can be subsumed in matching µ-logic by introducing the following notations:

AXφ ≡ ◦φ φ1 AU φ2 ≡ µX.φ2 ∨ (φ1 ∧ ◦X) (5.75)

EXφ ≡ •φ φ1 EU φ2 ≡ µX.φ2 ∨ (φ1 ∧ •X) (5.76)

As for models, CTL requires infinite computation trees, so let us add the axiom (Inf) and
call the resulting ΣTS-theory ΓCTL.

Theorem 5.13. For all CTL formulas φ, the following are equivalent: (1) ⊢CTL φ; (2)
⊨CTL φ; (3) ΓCTL ⊢ φ; (4) ΓCTL ⊨ φ.

Therefore, CTL can be regarded as a theory with one axiom, over the same signature ΣTS

for transition systems.

5.9.4 Discussion

It may be insightful to look at infinite-trace LTL, finite-trace LTL, CTL, as well as
modal µ-calculus through the lenses of matching µ-logic, as theories over a unary symbol
signature. Modal µ-calculus is the empty theory and thus the least constrained one. CTL
comes immediately next with only one axiom, (Inf), to enforce infinite computation traces;
Infinite-trace LTL further constrains with the linearity axiom (Lin). Finally, finite-trace LTL
replaces (Inf) with (Fin). We believe that matching µ-logic can serve as a convenient and
uniform framework to define and study temporal logics. For example, finite-trace CTL can
be trivially obtained as the theory containing only the axiom (Fin). LTL with both finite
and infinite traces is the theory containing only the axiom (Lin). And CTL with unrestricted
(finite or infinite branch) models is the empty theory (i.e., modal µ-calculus).

100

5.10 DEFINING DYNAMIC LOGIC

We have seen the syntax of dynamic logic (DL) in Section 2.10. It is known that DL can
be embedded in the variant of modal µ-calculus with multiple modalities (see, e.g., [71]). The
idea is to define a modality [a] for every atomic program a ∈ APgm, and then to define the
four program constructs as least/greatest fixpoints. We can easily adopt the same approach
and associate an empty matching µ-logic theory to DL, over a signature containing as many
unary symbols as atomic programs. However, matching µ-logic allows us to propose a better
embedding, unrestricted by the limitations of modal µ-calculus. Indeed, the embedding in [71]
suffers from at least two limitations that we can avoid with matching µ-logic. First, sometimes
transitions are not just labeled with discrete programs, such as in hybrid systems [72] and
cyber-physical systems [73] where the labels are continuous values such as elapsing time. We
cannot introduce for every time t ∈ R≥0 a modality [t], as only countably many modalities
are allowed. Instead, we may want to axiomatize the domains of such possibly continuous
values and treat them as any other data. Second, we may want to quantify over such values,
be they discrete or continuous, and we would not be able to do so (even in matching µ-logic)
if they are encoded as modalities/symbols.

Let us instead define a signature for DL

ΣDL = ({State,Pgm},ΣDL
ϵ,Pgm ∪ {• ∈ ΣDL

PgmState,State}) (5.77)

where the “one-path next •” is now a binary symbol taking an additional Pgm argument, and
for all atomic programs a ∈ APgm we add a constant symbol a ∈ ΣDL

λ,Pgm. Just like how all
ΣTS-models are transition systems (Section 5.8), all ΣDL-models are APgm-labeled transition
systems. We define compound programs in DL as the following notations:

⟨α⟩φ ≡ •(α, φ) [α]φ ≡ ¬⟨α⟩¬φ (5.78)

(Seq) [α ; β]φ ≡ [α][β]φ (Choice) [α ∪ β]φ ≡ [α]φ ∧ [β]φ (5.79)

(Test) [ψ?]φ ≡ (ψ → φ) (Iter) [α∗]φ ≡ νX. (φ ∧ [α]X) (5.80)

Let ΓDL denote the empty ΣDL-theory.

Theorem 5.14. For all DL formulas φ, the following are equivalent: (1) ⊢DL φ; (2) ⊨DL φ;
(3) ΓDL ⊢ φ; (4) ΓDL ⊨ φ.

Proof. See Section 5.15.8. QED.

We point out that the iterative operator [α∗]φ is axiomatized with two axioms in the proof

101

system of DL in Figure 2.8:

(DL6) φ ∧ [α][α∗]φ↔ [α∗]φ (5.81)

(DL7) φ ∧ [α∗](φ→ [α]φ)→ [α∗]φ (5.82)

while we just regard it as notation, via (Iter). One may argue that (Iter) de-sugars to the
operator ν, though, which obeys the proof rules (Pre-Fixpoint) and (Knaster Tarski)
that essentially have the same effect as (DL6) and (DL7). We agree. And that is exactly
why we think that we should have one uniform and fixed logic, such as matching µ-logic,
where general fixpoint axioms are given to specify and reason about any fixpoint properties
of any domains and to develop general-purpose automatic tools and provers. When it comes
to specific domains and special-purpose logics, we can define them as theories/notations
in matching µ-logic, as what we have done in this section for modal µ-calculus and all its
fragment logics. Often, these special-purpose logics are simpler than matching µ-logic and
more computationally efficient. In particular, modal µ-calculus and all its fragment logics
shown in this section are not only complete but also decidable [74], while matching µ-logic
does not have any complete proof system and thus its validity is not semi-decidable. Therefore,
the existing decision procedures and completeness results of these special-purpose logics give
decision procedures and completeness results (such as Theorem 5.10) for the corresponding
matching µ-logic theories.

5.11 DEFINING REACHABILITY LOGIC

RL can be defined in matching µ-logic by defining the extended signature ΣRL = ΣCfg∪{• ∈
ΣCfg,Cfg} and the following notation for reachability rules:

“weak eventually” ⋄w φ ≡ νX. φ ∨ •X // equal to ¬WF ∨ ⋄φ (5.83)

“reaching star” φ1 ⇒∗ φ2 ≡ φ1 → ⋄wφ2 (5.84)

“reaching plus” φ1 ⇒+ φ2 ≡ φ1 → • ⋄w φ2 (5.85)

Notice that the “weak eventually” ⋄wφ is defined similarly to the “eventually” ⋄φ ≡ µX . φ ∨
•X, but instead of using least fixpoint operator µ, we define it as a greatest fixpoint. One
can prove that ⋄wφ = ¬WF ∨ ⋄φ, that is, a configuration γ satisfies ⋄wφ if either it satisfies
⋄φ, or it is not well-founded, meaning that there exists an infinite execution path from γ.
Also notice that “reaching plus” φ1 ⇒+ φ2 is a stronger version of “reaching star”, requiring
that ⋄wφ2 should hold after at least one step. This progressive condition is crucial to the

102

soundness of RL reasoning: as shown in (Transitivity) in Figure 2.12, circularities are
flushed into the axiom set only after one reachability step is established. This leads us to the
following translation from RL sequents to matching µ-logic patterns.

Definition 5.6. Given a rule φ1 ⇒ φ2, define the matching µ-logic pattern ⊡(φ1 ⇒ φ2) ≡
□(φ1 ⇒+ φ2) and extend it to a rule set A as follows: ⊡A ≡

∧
φ1⇒φ2∈A⊡(φ1 ⇒ φ2). Define

the translation RL2MmL from RL sequents to matching µ-logic patterns as follows:

RL2MmL(A ⊢C φ1 ⇒ φ2) = (∀⊡A) ∧ (∀◦⊡C)→ (φ1 ⇒⋆ φ2) (5.86)

where ⋆ = ∗ if C = ∅ and ⋆ = + otherwise. We use ∀φ as a shorthand for ∀x⃗ . φ where
x⃗ = freeVar(φ). Recall that the “◦” in ∀◦⊡C is “all-path next”.

Hence, the translation of A ⊢C φ1 ⇒ φ2 depends on whether C is empty or not. When C
is nonempty, the RL sequent is stronger in that it requires at least one step being made in
φ1 ⇒ φ2. Axioms (in A) are also stronger than circularities (in C) in that axioms always
hold, while circularities only hold after at least one step because of the leading all-path next
“◦”; and since the “next” is an “all-path” one, it does not matter which step is actually made,
as circularities hold on all next states.

Theorem 5.15. Let ΓRL = {φ ∈ MLPatternCfg | MCfg ⊨ φ} be the set patterns (without
µ) of sort Cfg that hold in MCfg. For all RL systems S and rules φ1 ⇒ φ2 satisfying the
same technical assumptions in [12], the following are equivalent: (1) S ⊢RL φ1 ⇒ φ2; (2)
S ⊨RL φ1 ⇒ φ2; (3) ΓRL ⊢ RL2MmL(S ⊢∅ φ1 ⇒ φ2); (4) ΓRL ⊨ RL2MmL(S ⊢∅ φ1 ⇒ φ2).

Proof. See Section 5.15.9. QED.

Therefore, provided that an oracle for validity of all the configuration patterns in MCfg

is available, the matching µ-logic proof system is capable of deriving any valid reachability
rules. This way, matching µ-logic serves as an even more fundamental logic foundation than
RL for the K framework (Section 2.15) and thus for programming language specification and
verification, because matching µ-logic can express significantly more properties than partial
correctness reachability.

5.12 DEFINING λ-CALCULUS

To define λ-calculus in matching µ-logic, we need to address two challenges. The first
challenge is to handle the binding behavior of λ, that is, to define λx . e as a notation in
matching µ-logic such that it satisfies the (meta-level) properties regarding free variables,

103

α-equivalence, and capture-avoiding substitution. The second challenge is to prove the
following equivalent result, called the conservative extension theorem:

Γλ ⊢ e1 = e2
conservativeness−−−−−−−−−⇀↽−−−−−−−−−

extensiveness
⊢λ e1 = e2 for all e1, e2 ∈ Λ (5.87)

The conservativeness direction is the difficult part. Indeed, matching µ-logic has a richer
syntax and a more complex proof system than λ-calculus. We need to show that this more
complex infrastructure cannot be used to prove more equations between λ-expressions.

To solve the first challenge, we make an important observation that λ plays two important
roles: (i) it builds a term λx . e, and (ii) it builds a binding of x into e. We will separate
these two roles when defining λx . e as a notation in matching µ-logic, where we build terms
using symbols and creating the binding behavior using the built-in binder ∃.

To solve the second challenge, We give two different proofs for the conservativeness of Γλ,
each providing a unique insight about the construction of Γλ. The first proof is a model-
theoretic proof, discussed in Section 5.12.2. It considers the concrete cc models for λ-calculus,
which are known to be complete with respect to λ-calculus reasoning (Section 2.11). This
model-theoretic proof is easier to understand and is what inspired our encoding of the λ
binder but it does not generalize to binders used in other formal systems, such as π-calculus
or type systems. Therefore, we give another proof-theoretic proof, based purely on the syntax
and formal proofs of λ-calculus, instead of its models. The proof-theoretic proof is easier to
be generalized to the binders in other formal systems.

5.12.1 Defining the λ binder

Our definition of the λ binder in matching µ-logic is inspired by the concrete ccc models
in Section 2.11. The key ingredient is the retraction function G that encodes representable
functions into elements, so let us first define representable functions and the retraction
function.

Recall that fρe,x is the representable function in Section 2.11, which corresponds to the
interpretation of λx . e under ρ in the concrete ccc model. The graph of fρe,x,

graph(fρe,x) =
{(
a, |e|λρ[a/x]

)
| for all a in the concrete ccc model A

}
(5.88)

contains all the argument-value pairs of fρe,x. Note that this graph is an element in P(A×A),
the powerset of A× A, but not every element in P(A× A) is the graph of a representable
function. Therefore, the retraction function G is captured as a partial function from P(A×A)

104

to A which is defined only on the graphs of representable functions, and undefined elsewhere.
Now we start to define Γλ following the above intuition. Firstly, we include all λ-calculus

variables in V as element (and not set) variables in matching µ-logic. Then, we define three
sorts: Exp as the sort of λ-expressions; Pair as the product sort of V and Exp (Definition 5.2);
and 2Pair as its power sort (Definition 5.5). Intuitively, 2Pair is the sort of all binary relations,
including non-functions, over V and Exp, because the carrier set of 2Pair is the powerset of
the product of the carrier sets of V and Exp.

Next, we define a partial function lambda : 2Pair ⇀ Exp, to represent the retraction function
G in Section 2.11. We define app : Exp× Exp→ Exp to be the application function and write
e1e2 ≡ app(e1, e2). Abstraction λx . e is defined as the following syntactic sugar, where we
extract the general binding notation [x :V] e for clarity and because it can be used to define
any other binders, not only λ:

[x :V] e ≡ intension(∃x :V . ⟨x, e⟩) // the binding notation (5.89)

λx . e ≡ lambda([x :V] e) // λ-abstraction (5.90)

Equation (5.90) is a logical incarnation of the semantics of λx . e in the concrete ccc models
into matching µ-logic. In a concrete ccc model, |λx . e|λρ = G

(
fρe,x
)
, where fρe,x(a) = |e|

λ
ρ[a/x].

In matching µ-logic, ∃x :V . ⟨x, e⟩ denotes the union set
⋃
x {(x, e)}, namely the graph of fρe,x.

Note that ∀x :V . ⟨x, e⟩ also yields the correct binding behavior, but it does not have the
right semantic meaning of a graph. The binding notation [x :V] e takes this graph as a set
of pairs and packs them into one object in the power sort 2Pair. Then, this packed object is
passed to lambda, which decodes/retracts it into the intended interpretation of λx . e. For
now, we do not know any property about lambda, except that it is a partial function from
2Pair to Exp. Its intended behavior will be axiomatized by the axiom schema (β)—the axiom
schema that characterizes λ-abstraction and the semantics of λ.

Under the above notations, all λ-expressions are patterns. Particularly, the notation λx . e
yields the right binding behaviors about λ via the built-in binder ∃. Let Γλ be the theory for
λ-calculus that includes all the above definitions and notations and all instances of the (β)
axiom schema:

∀x1 :V . · · · ∀xn :V . (λx . e) e′ = e[e′/x] (5.91)

where x1, . . . , xn are all the free variables in freeVar((λx . e) e′). Note that the axioms are
needed to specify the semantics of λ in matching µ-logic, not its binding behavior. The latter
is directly inherited from that of the built-in binder ∃.

We emphasize that the encoding of λx . e in Equations (5.89) and (5.90) is only possible

105

Γλ ⊢ e1 = e2 =⇒1 Γλ ⊨ e1 = e2 =⇒2 M ⊨ e1 = e2 for Σλ-models Mww�
3

⊢λ e1 = e2 ⇐=5 ⊨λ e1 = e2 ⇐=4 A ⊨λ e1 = e2 for all concrete ccc models A

Figure 5.1: Main Steps in the Model-Theoretic Conservativeness Proof

because matching µ-logic treats terms and formulas uniformly as patterns, and it allows
(FOL-style) quantification to be built on terms. A similar definition will immediately fail in
FOL, because FOL enforces a clear distinction between terms and formulas at the syntax
level and quantification only applies to formulas.

We finish this section by proving the extensiveness theorem for λ-calculus.

Theorem 5.16. ⊢λ e1= e2 implies Γλ ⊢ e1= e2, for all e1, e2 ∈Λ.

Proof. Note that Γλ contains all instances of (β) and equational reasoning is available in
matching µ-logic. QED.

5.12.2 Model-theoretic conservativeness proof

Here we prove the conservativeness of Γλ using concrete ccc models of λ-calculus. The main
proof steps are summarized in Figure 5.1. The only nontrivial one is Step 3, which requires
to show that M ⊨ e1 = e2 for all M ⊨ Γλ implies A ⊨λ e1 = e2 for all A. The following is the
key lemma that establishes the connection between concrete ccc models and Γλ-models.

Lemma 5.3. For any concrete ccc model A and any valuation ρ, there exists a Γλ-model
MA and a corresponding valuation ρA such that |e|ρA =

{
|e|λρ
}

for every e ∈ Λ.

Proof. Let us fix a concrete ccc model (A,_•A_,G), where R(A) is its set of representable
functions and G : R(A) → A is its retraction function. Let MA

Exp = A. By Proposition 5.1,
MA

Pair = A × A and MA
2Pair

= P(A × A). We define lambdaMA accordingly to the retraction
function G; i.e., lambdaMA(P) = {G(f)} whenever P = graph(f) and f ∈ R(A), and
lambdaMA(P) = ∅, otherwise.

We define the corresponding ρA as ρA(x) = ρ(x) for every x ∈ V . We prove that
|e|ρA = {|e|λρ} for every e ∈ Λ by structural induction on e. The only nontrivial case is when
e is λx . e1. In this case, we have

|λx . e1|ρA = |lambda (intension (∃x :V . ⟨x, e1⟩))|ρA (5.92)

= lambdaMA(|intension (∃x :V . ⟨x, e1⟩)|ρA) (5.93)

106

= lambdaMA(|∃x :V . ⟨x, e1⟩)|ρA) (5.94)

= lambdaMA(
⋃
a∈A

{(a, |e1|ρA[a/x])}) (5.95)

= lambdaMA(
⋃
a∈A

{(a, |e1|λρ[a/x])}) (5.96)

= lambdaMA(graph(fρe1,x)) (5.97)

= {G(fρe1,x)} (5.98)

= {|λx . e1|λρ} (5.99)

Finally, we need to verify that MA ⊨ (β). It is straightforward. Using the above result, for
any x ∈ V , e, e′ ∈ Λ, and ρ, we have that |(λx . e)e′|λρ = |e[e′/x]|λρ in A implies |(λx . e)e′|ρA =

|e[e′/x]|ρA in MA. Noting that ρA is arbitrary (as ρ is arbitrary), MA ⊨ (β). QED.

The operations intension and lambda are crucial in the proof of Lemma 5.3. Without them,
∃x :V . ⟨x, e⟩ is merely the graph set, not a singleton pattern, and thus cannot be directly
used to interpret λx . e.

Using Lemma 5.3, we can immediately prove Step 3 in Figure 5.1:

Lemma 5.4. If M ⊨ e1= e2 for every Γλ-model M , then A⊨λ e1= e2 for every concrete ccc
models A.

Proof. Let A be any concrete ccc model and ρ be any valuation. By Lemma 5.3, there exists a
Γλ-model MA and a valuation ρA such that |e|ρA = {|e|λρ} for any e ∈ Λ. Since MA ⊨ e1 = e2,
we have |e1|ρA = |e2|ρA , and thus |e1|λρ = |e2|λρ . Since ρ is arbitrary, A ⊨λ e1 = e2. QED.

Now we finish the model-theoretic conservativeness proof in Figure 5.1.

Theorem 5.17. Γλ ⊢ e1 = e2 implies ⊢λ e1 = e2, for all e1, e2 ∈ Λ.

Proof. See Figure 5.1, where Step 1 is proved by Theorem 4.1; Step 2 is proved by definition;
Step 3 is proved by Lemma 5.4; Step 4 is proved by definition; and Step 5 is proved by
Theorem 2.12. QED.

Theorem 5.17 together with Theorem 5.16 show that Γλ is a conservative extension of
λ-calculus.

Theorem 5.18. For every e1, e2 ∈ Λ, these are equivalent: (1) Γλ ⊢ e1 = e2; (2) Γλ ⊨ e1 = e2;
(3) ⊨λ e1 = e2; (4) ⊢λ e1 = e2.

Proof. (1) =⇒ (2) is by Theorem 4.1. (2) =⇒ (3) is by Lemma 5.4. (3) =⇒ (4) is by
Lemma 2.12. (4) =⇒ (1) is by Theorem 5.17. QED.

107

The equivalence (1) ⇐⇒ (4) is called the conservative extension theorem for Γλ. The
equivalence (2) ⇐⇒ (4) is called the (deductive) completeness of matching µ-logic with
respect to Γλ. By defining λ-calculus in matching µ-logic, we automatically obtain a model
of theory for λ-calculus via the matching µ-logic Γλ-models.

5.12.3 Proof-theoretic conservativeness proof

The model-theoretic conservativeness proof is intuitive because it is based on the models
of λ-calculus. It also has a clear limitation, which is that it requires a model theory for
λ-calculus. In Section 5.12.2, we use the concrete ccc models for λ-calculus and especially the
completeness result in Theorem 2.12. Therefore, the model-theoretic proof in Section 5.12.2 is
specific to λ-calculus and the concrete ccc models. It is not easy to generalize to the binders
in other formal systems, especially those do not have an accessible model theory.

Therefore, we give an an alternative, proof-theoretic conservativeness proof that is entirely
based on the syntactic structure of λ-calculus. As a result, the proof-theoretic proof is easier
to generalize to other logical systems and binders.

We build a special Γλ-model T , which we call the term model of λ-calculus,3 and follow the
term algebra technique [75, 76, 77]: T has as elements the equivalence classes of λ-expressions
modulo αβ-equivalence, and each e ∈ Λ is interpreted in T as the equivalence class containing
itself, denoted by [e]. Formally, we will prove this:

Theorem 5.19. Let [e] = {e′ ∈ Λ | ⊢λ e = e′} be the equivalence class of e modulo αβ-
equivalence. Let [Λ] = {[e] | e ∈ Λ} be the set of all these classes. Then, there is a Γλ-model
T , called term model, and a valuation ρT , called term valuation, such that |e|T,ρT = {[e]} for
all e ∈ Λ. Since T is a fixed model, we abbreviate |e|T,ρT as |e|ρT .

Note that for distinct variables x, y ∈ V , we have [x] ̸= [y] [38, Fact 2.1.37]. Clearly,
x ∈ [x], but [x] also includes infinitely many expressions: (λy . y)x, (λy . y)((λy . y)x), etc.

We will show the construction of T shortly after. For now, let us first prove Theorem 5.17
from Theorem 5.19.

Another Proof of Theorem 5.17. Suppose Γλ ⊢ e1 = e2. We have

Γλ ⊢ e1 = e2 ⇒ Γλ ⊨ e1 = e2 by Theorem 4.1 (5.100)

⇒ T ⊨ e1 = e2 by definition (5.101)

3In the literature on λ-calculus, term models have a different meaning. For example, in [38], term models
are special λ-calculus models constructed based on the combinatory algebra semantics; see Section 5.12.4 for
a comparison.

108

⇒ |e1|ρT = |e2|ρT by Proposition 2.3 (5.102)

⇒ [e1] = [e2] by Theorem 5.19 (5.103)

⇒ ⊢λ e1 = e2 by the definition of [e] in Theorem 5.19 (5.104)

QED.

Now we construct T and show that T ⊨ Γλ. We define TExp = [Λ], which is the set of
equivalence classes of λ-expressions. Note that TPair = [Λ]× [Λ] and T2Pair = P([Λ]× [Λ]). We
define appT ([e1], [e2]) = [e1 e2] for e1, e2 ∈ Λ. Note that this definition is well-defined, because
⊢λ e1 e2 = e′1 e

′
2 whenever ⊢λ e1 = e′1 and ⊢λ e2 = e′2. Finally, we define

lambdaT

(⋃
z∈V

(
[z], [e[z/x]]

))
=
{
[λx . e]

}
, for any x ∈ V and e ∈ Λ. (5.105)

and lambdaT (P) = ∅, if P is not a graph of the above form.
The construction of T , especially Equation (5.105), is critically depending on the notation

definition λx . e ≡ lambda (intension ∃x :V . ⟨x, e⟩). The α-equivalence λx . e ≡ λz . (e[z/x]) is
captured, both syntactically and semantically, by collecting all the pairs ⟨z, e[z/x]⟩ for all
z, using the pattern ∃x :V . ⟨x, e⟩. Therefore, ∃x :V . ⟨x, e⟩ encapsulates all the information
about [λx . e], which is packed by intension and passed to lambda, and then retracted to restore
the original expression λx . e. Proposition 5.3 shows that the condition in Equation (5.105)
on lambdaT is consistent.

Proposition 5.3. [λx . e] = [λx′ . e′], whenever⋃
z∈V

([z], [e[z/x]]) =
⋃
z∈V

([z], [e′[z/x′]]) (5.106)

Proof. Assume the opposite, i.e., [λx . e] ̸= [λx′ . e′]. Let z∗ ∈ V be a fresh variable that does
not occur in λx . e or λx′ . e′. Then we have λx . e ≡ λz∗ . e[z∗/x] and λx′ . e′ ≡ λz∗ . e′[z∗/x′].
By the assumption, we have [λz∗ . e[z∗/x]] ̸= [λz∗ . e′[z∗/x′]], and thus [e[z∗/x]] ̸= [e′[z∗/x′]].
Noting that [z1] = [z2] iff z1 = z2, for every z1, z2 ∈ V . Thus, ([z∗], [e[z∗/x]]) is in the left-hand
side of Equation (5.106) but not the right-hand side. This is a contradiction. QED.

So far, we have constructed the term model T . We now define the term valuation ρT as
ρT (x) = [x] for every x ∈ V .

Proposition 5.4. |e|ρT = {[e]}, and |e|ρ[ρ(z)/x] = |e[z/x]|ρ for all ρ.

109

Proof. We prove both properties simultaneously by induction on the λ-depth d(e) of e, which
is the maximum number of nested λ’s in e. If d(e) = 0 then e is a variable or is built purely
using applications (i.e., app) and has no λ abstraction. In this case, both properties can be
proved by another structural induction on e. If d(e) ≥ 1 then e has either the form e1 e2

where d(e1), d(e2) ≤ d(e), or the form λx . e1 where d(e1) ≤ d(e)− 1. Then another structural
induction on e proves both properties. QED.

Proposition 5.5. If ⊢λ e = e′, then |e|ρ = |e′|ρ for any ρ ∈ VarVal .

Proof. Note that the interpretation of a λ-expression relies on its free variables. Suppose
freeVar(e) ∪ freeVar(e′) = {x1, . . . , xn} and ρ(xi) = [yi] for i ∈ {1, . . . , n}. Then, yi is
the only variable that is in [yi]. Since ρ equals to ρT [[y1]/x1] · · · [[yn]/xn] restricted on
x1, . . . , xn, we have |e|ρ = |e|ρT [[y1]/x1]···[[yn]/xn]. By Proposition 5.4, |e|ρT [[y1]/x1]···[[yn]/xn] =
|e[y1/x1] · · · [yn/xn]|ρT = {[e[y1/x1] · · · [yn/xn]]}. Similarly |e′|ρ = {[e′[y1/x1] · · · [yn/xn]]}.
Then, ⊢λ e[y1/x1] · · · [yn/xn] = e′[y1/x1] · · · [yn/xn]. Then we have

[e[y1/x1] · · · [yn/xn]] = [e′[y1/x1] · · · [yn/xn]] (5.107)

Hence, |e|ρ = |e′|ρ. QED.

Now we only need to prove Theorem 5.19.

Proof of Theorem 5.19. We have shown that |e|ρT = {[e]} for every e ∈ Λ, in Proposition 5.4.
It remains to show that T validates (β), i.e., |(λx . e) e′|ρ = |e[e′/x]|ρ for all ρ. The latter
follows immediately from Proposition 5.5. QED.

5.12.4 Discussion

We first compare our term model T for λ-calculus to the other classic notion of term
models. In λ-calculus, a term model [38, Definition 5.2.11] is a special λ-model, which is an
algebra with [Λ] being the underlying carrier set. The operations include a binary application
function given by [e1][e2] = [e1e2] for e1, e2 ∈ Λ as well as two constants: k = [λx . λy . x]

and s = [λx . λy . λz . (xz)(yz)]. We denote the above model by A and call it a classical term
model, to not confuse it with our term model T . Clearly, T and A follow different approaches
to capture λ-expressions. While A uses the name-free, combinators approach, where λ is
handled by abstraction elimination, our term model T gives an explicit and constructive
interpretation to λ, as shown in Equation (5.105).

Next, we discuss the representability problem [78, pp. 8], which is a long-standing, concerning
and open problem in the study of λ-calculus. The problem asks if a given class of λ-calculus

110

models is representationally complete, in the sense that there exists a model in the given class
such that any two expressions e1 and e2 are provably equal if and only if they are interpreted
as the same element/value in that model. Representability completeness indicates that a
class of λ-calculus models is sufficient in capturing the formal reasoning in λ-calculus, so one
may reduce the study of formal reasoning in λ-calculus to the study of models, where more
mathematical tools and techniques can be applied. Hence, reduction is the main motivation.
λ-calculus models are broadly divided into syntactic models and non-syntactic models [79,

pp. 13], depending on whether their construction is based on the syntax and provability of
λ-calculus or not. All the classical term models in λ-calculus, as well as our particular term
model in Section 5.12.3, are syntactic models. Syntactic models are often representationally
complete, but studying them tends to be as hard as studying the syntax and formal reasoning
directly, and thus the reduction to syntactic models usually does not help simplify the study
of λ-calculus. Thus, for decades researchers have been searching for and studying sub-classes
of non-syntactic concrete ccc models, hoping they are also representationally complete. So far,
three main such sub-classes have been identified, known as the main semantics of λ-calculus:
Scott’s continuous semantics [80], Berry’s stable semantics [81, 82], and Bucciarelli-Ehrhard
strongly stable semantics [83]. The representability problem for the main semantics (and
their sub-classes) has remained largely open as of today, except for some negative results
proved for some sub-classes (e.g., graph models [84]).

Theorem 5.19 shows that the class of Γλ-models of is representationally complete, positively
answering the representability problem for our matching µ-logic semantics of λ-calculus. Our
proof does not rely on any known results about the representational completeness of any
existing semantics; instead, it is entirely based on the model theory of matching µ-logic,
which is not specific to λ-calculus but which allows for an appropriate axiomatization of
λ-calculus as a theory that is hereby endowed with the desired representationally complete
models automatically. We can push Theorem 5.19 even further to any equational extensions
of λ-calculus, known as λ-theories. Indeed, the definition of the equivalence class [e] as the
set of αβ-equivalent expressions of e, has not been critical in the proof of Theorem 5.19,
and the conclusion still holds if we consider any equivalence class [e] that includes the basic
αβ-equivalence. Therefore, we conclude that the matching µ-logic definition of λ-calculus is
representationally complete for all λ-theories.

Although we do not solve any of the existing open problems, our work suggests the matching
µ-logic can be a viable alternative to the existing λ-calculus models within the main semantics.
The matching µ-logic models are as good as the existing models for λ-calculus in terms of
theoretical properties w.r.t. formal reasoning and semantics, yet unlike the existing models,
they are general in the sense that they are not crafted specifically for λ-calculus, but are

111

obtained from the matching µ-logic theory Γλ. We give a general solution for all the binders,
which for λ-calculus is as good as the state of the art, considering both the proof-theoretic
and the model-theoretic aspects.

5.13 DEFINING TERM-GENERIC LOGIC

We have shown how to define the λ binder as the following notation (Eqs. (5.89)-(5.90)):

λx . e ≡ lambda [x :V] e (5.108)

In this section we show that our approach is not specific to λ-calculus. We provide evidence
that matching µ-logic can serve as a general approach to dealing with binders. We will
show how to use patterns similar to Eq. (5.108) to define the binders in a variety of logical
systems, including System F [85, 86], pure type systems [87], π-calculus [88], and more, and
prove a corresponding conservative extension theorem for each of them. To do that, several
challenges need to be solved.

The first challenge is that binders can have more complex binding behavior than in λ-
calculus; see Figure 5.2. For example, λx : e1 . e2 in System F binds x within e2, but not
in e1; Inp(x, y, e) in π-calculus has the binding variable in the second position (i.e., y), and
not the first position. We deal with this binding behavior by de-sugaring to binders whose
binding variable is their first argument and is bound within the second argument only; that
is, we de-sugar an arbitrary binder to a binder of the form b(x, e1, . . . , en), where x is bound
in e1 but not in e2, . . . , en. Clearly, this de-sugaring process is just a sequence of argument
swappings. Then, we further de-sugar b(x, e1, . . . , en) to b′(b′′(x, e1), e2, . . . , en), where b′ is a
(binding-free) symbol and b′′ is a binder that binds x to e1, just like λ in λ-calculus. Finally,
we define b′′(x, e1) as the following syntactic sugar:

b′′(x, e) ≡ retractionb [x :V] e (5.109)

in the same way as in Eq. (5.108), except that here we use a new retraction symbol retractionb
that is specific to the binder b. Each binder has its own retraction symbol, but the other
infrastructure symbols, such as products, powersets, and the binding notation [x :V] e, are the
same. From now on, we will only consider binders b(x, e) that bind x within e, for technical
convenience.

The second challenge is that logical systems featuring bindings are very different from each
other, in terms of the kinds of logical reasoning that is carried out in them. For example,

112

Binders Behaviors Meaning Systems
λx . e binding x into e function abstraction λ-calculus
λx : e1 . e2 binding x into e2 function abstraction System F
λt . e binding t into e type abstraction System F
Πt . e binding t into e Π-type constructor System F
λx : e1 . e2 binding x into e2 function abstraction Pure type system
πx : e1 . e2 binding x into e2 type abstraction Pure type system
Inp(x, y, e) binding y into e input process π-calculus
νy . e binding y into e new process name creation π-calculus
Bout(e1, x, y, e2) binding y into e2 bound output transition π-calculus
Inp(e1, x, y, e2) binding y into e2 input transition π-calculus

Figure 5.2: Example Binders and Their Behavior in Logical Systems

System F derives typing judgments Γ ▷ e1 : e2 to mean that e1 has type e2 under typing
environment Γ; π-calculus derives transitions e1

act−→ e2 to mean that process e1 transits by
action act to process e2. It is tedious and non-systematic to consider these logical systems
separately, because we would need to capture their specific logical reasoning and prove the
conservative extension theorem for each of them, more or less similarly to the syntax-based
proof in Section 5.12.3.

To capture the various logical systems featuring bindings more systematically, we employ
a parametric framework for binders, called term-generic logic [40] (TGL), discussed in
Section 2.12. We will define TGL in matching µ-logic and prove a conservative extension
theorem for TGL, from which the conservative extension theorems for the other logical
systems follow as corollaries. We define a theory ΓTGL and introduce notations such that
all TGL terms and formulas are well-formed patterns. We show that ΓTGL is a conservative
extension of TGL, by proving the following equivalence theorem.

Theorem 5.20. Under the condition in Theorem 2.13, the following are equivalent: (1)
(ΓTGL ∪ E) ⊢

∧
∆1 →

∨
∆2. (2) (ΓTGL ∪ E) ⊨

∧
∆1 →

∨
∆2; (3) E ⊨TGL ∆1 ▷ ∆2; (4)

E ⊢TGL ∆1 ▷ ∆2; Here,
∧

∆1 is the conjunction of patterns in ∆1 and
∨

∆2 is the disjunction
of patterns in ∆2.

The many-sorted binder syntax and TGL terms are captured by defining sorts and many-
sorted functions, and defining binders as in Eq. (5.109). TGL formulas, except π(e1, . . . , en),
are captured by matching µ-logic’s derived connectives and equality. Predicate π(e1, . . . , en)
for π ∈ Πs1···sn , is captured by defining a symbol π and the following axiom:

(Predicate) ∀x1 : s1∀xn : sn . (π x1 · · · xn = ⊤) ∨ (π x1 · · · xn = ⊥) (5.110)

113

which specifies that π returns either ⊤ or ⊥, i.e., it indeed builds predicate patterns. Without
such axioms, π x1 · · · xn could be any subset. Let ΓTGL contain all the above definitions
and notations. This way, all TGL terms are functional patterns and all TGL formulas are
predicate patterns.

Theorem 5.20 is proved using a model-based approach similar to Figure 5.1. Here we
explain the only nontrivial proof step, which is (2) =⇒ (3). This is proved by constructing a
matching µ-logic model MA from any given TGL model A, such that all TGL terms and
formulas are interpreted the same in MA and A, i.e., |e|ρ = {Ae(ρ)} for every e ∈ TGLTerm;
|φ|ρ =MA whenever ρ ∈ Aφ, and |φ|ρ = ∅, whenever ρ ̸∈ Aφ, for every φ ∈ TGLForm.

Using TGL and Theorem 5.20, we obtain a systematic proof of the conservative extension
theorems and deductive completeness theorems for all logical systems that have been defined
in TGL and studied in [40, Section 4] and [89, Section 4], including System F [85, 86] (both
the typing and reduction versions), λ-calculus (including the untyped [37], sub-typed [90],
illative [38], and linear versions [91, 92]), pure type systems [87], and π-calculus [88]. The
systematic proof works as follows. For each logical system L, its set of terms TermL can be
captured by a binder syntax using the de-sugaring discussed at the beginning of Section 2.12.
The proof/type system of L that derives sequents of the form ⊢L Φ is captured by a set
of TGL axioms EL, where each axiom corresponds to one type/proof rule of L [40]. An
adequacy theorem is also proved there for each L, stating that ⊢L Φ iff EL ⊢TGL ΦTGL, where
ΦTGL (of the form ∆Φ

1 ▷ ∆Φ
2) is the corresponding TGL encoding of the L-sequent Φ. Let

ΓL = ΓTGL ∪ EL be the theory that captures L, and ΦML =
∧
∆Φ

1 →
∨
∆Φ

2 be the encoding
of Φ. By Theorem 2.13, we have that ⊢L Φ in L, iff EL ⊢TGL ΦTGL in TGL, iff ΓL ⊢ ΦML in
matching µ-logic, iff ΓL ⊨ ΦML in matching µ-logic. Hence, ΓL is a conservative extension of
L and the class of matching logic models of ΓL is complete with respect to L.

Note that the term consistency has different meanings in different contexts. In type
systems, inconsistency means the ability to prove any typing judgments t : τ . Similarly, in
λ-calculus or other equational logic theories, inconsistency means the ability to prove any
equations e1 = e2. However, in matching µ-logic (and also FOL), inconsistency means the
ability to prove logical false ⊥. Thus, inconsistency for classical logics such as matching
µ-logic is stricter than that for type systems and λ-calculus. For example, if T is a PTS that
contains the typing axiom Type :Type, then T is inconsistent [93], but ΓT is still a consistent
matching µ-logic theory and has a model that interprets the typing relation _ :_ as the total
relation on all PTS terms.

114

5.14 DISCUSSION

We have considered various logics, calculi, formal systems, and foundations of compu-
tation and discussed their corresponding axiomatizations in matching µ-logic in terms of
axioms/theories and notations. In its nature, our axiomatizations can be categorized as a
shallow embedding, instead of a deep embedding, from the target system to matching µ-logic.
This is because we capture not only the syntax and proof rules of the target system but
also its semantics and models. For example, our axiomatization of equational specifications
(discussed in Section 5.4) produces exactly (F,E)-algebras as its models up to isomorphism.
Therefore, matching µ-logic can be used as a specification language, which we can use to
specify models, and further restrict them to a small class of intended models that are of our
interest by add axioms as logical constraints.

Models are insightful. They help us understand a logical system better, from a different
angle. It is not unusual that more than one notion or class of models are proposed for one
logic, because each has its unique merit in helping us understand the logic from a certain
perspective. Since matching µ-logic has a built-in notion of models, by defining a logical
system as a matching µ-logic theory we can immediately study its resulting model theory and
properties. For example, the matching µ-logic theory of λ-calculus (discussed in Section 5.12)
yields a precise and insightful description of how λx . e is semantically interpreted in matching
µ-logic models, which leads us to a new semantics of λ-calculus that is representationally
complete for all λ-theories (see Section 5.12.4).

It is future work to establish the logical relationships between matching µ-logic and other
logical systems in a more systematic way that was initially proposed in [94] and further
developed in [95, 96] using methods and techniques from category theory, called institution
morphisms. A first attempt has been made in [97, Appendix D.3] which establishes a
theoroidal comorphisms from equational specification to matching µ-logic.

We now discuss the existing logics that support the specification and reason about fixpoints
and comparing them with matching µ-logic.

LFP is a classic logic that extends FOL with support for fixpoints, which we have introduced
in Section 2.3. In the literatures, there are many fragments of LFP that are of particular
interest to computer scientists, such as monadic LFP (abbreviated M-LFP), which requires
all predicate variables to have arity one; existential LFP (abbreviated E-LFP or ∃LFP),
which requires the formulas to have no universal quantifiers and allows negations only in
front of atomic formulas that are not built from predicate variables; and stratified LFP
(abbreviated SFP), which is the smallest logic whose formulas contains all ∃LFP formulas
and satisfy some basic closure properties (such as being closed under propositional operators

115

and the existential quantification). We refer the reader to [98, 99, 100] for precise discussions
and definitions of these logics.

LFP and its variants/fragments have been used for a long time for program specifications,
especially for the heap, in the work on natural proofs [101, 102, 103, 104, 105]. It is also
well-known that they naturally capture loops in programs [106]. The proof rules for LFP
and their automation have been studied in [105, 107, 107].

LFP has builtin support for tuples and for specifying multi-arity relations. However, as
we will see in Section 5.2, LFP can be defined in matching µ-logic by axiomatizing a theory
of tuples and reducing multi-arity relations to unary relations via the currying-uncurrying
correspondence. On the other hand, matching µ-logic has set variables which can occur free in
the axioms of a theory. Semantically, any free variable that occurs in an axiom is universally
quantified. Thus in matching µ-logic, we can write axioms that give us the expressive power
of top-level universal second-order quantification and go beyond LFP. For example, it is
known that there are incomplete modal logics (see, e.g., [108]), which are modal logic K
extended with a finite number of axioms with free second-order propositional/set variables.
These incomplete modal logics are naturally instances/fragments of matching µ-logic but we
are not aware of any encodings from these incomplete modal logics into LFP.

SOL, introduced in Section 2.4, can also be used to specify and reason about fixpoints. In
particular, the reduction from matching µ-logic to SOL in Section 4.3 shows that SOL formulas
have the expressive power of matching µ-logic patterns. On the other hand, SOL can be
defined in matching µ-logic, as we will see in Section 5.6. The idea is to axiomatize powersets
(Section 5.6.1) and then reduce second-order quantification to first-order quantification over
the powersets.

Initial algebra semantics represents a generic and principled framework to study induction.
It originated in the 1970s, when algebraic techniques started to be applied to specify basic
data types such as lists, trees, stacks, etc. The original paper on initial algebra semantics [109]
reviewed various existing algebraic specification techniques and showed that they were all
initial models, making the concept of initiality explicit for the first time in formal language
semantics. Since then, initial algebra semantics has gathered much research interest and
become a well-established field, leading to a profound study on its foundations as well as
applications, tools, libraries, packages, provers [43, 69, 70, 110, 111, 112].

Initial algebras can be defined in matching µ-logic, as we will see in Section 5.4. The
key idea is to use the µ operator to write least fixpoint patterns as axioms that enforce
the carrier sets to be isomorphic to the sets of terms, on top of which we can define any
equational specification. More interestingly, the matching µ-logic proof system can be used to
derive induction principles as theorems. For example, mathematical induction and structural

116

induction can be derived using the matching µ-logic proof system (Section 5.5.3).
Modal µ-calculus is an extension of modal logic with direct support for fixpoints, which we

have introduced in Section 2.8. The proof system of modal µ-calculus was proposed in [29]
and proved to be complete in [30]. Matching µ-logic can be regarded as a natural extension
of modal µ-calculus with many-sorted universes, many-sorted modal operators (i.e., symbols),
first-order variables (i.e., element variables), and first-order quantification.

5.15 PROOFS

We present proof details for the results in Chapter 5.

5.15.1 Proof of Theorem 5.1

Even though we tacitly blur the distinction between constant symbol σ ∈ Σλ,s1⊗···⊗sn⊗s

and n-ary symbol σ ∈ Σs1...sn,s, doing so will cause us a lot of trouble in this section, when
our aim is to prove such a blur of syntax actually works. Therefore, within this section, we
introduce and use a more distinct syntax that distinguishes the two, as follows

σ ∈ Σs1,...,sn,s an n-ary symbol (5.111)

ασ ∈ Σλ,s1⊗···⊗sn⊗s the corresponding constant symbol (5.112)

σ(φ1, . . . , φn) symbol application (5.113)

ασ[φ1, . . . , φn] projections (5.114)

σ(x1, . . . , xn) = ασ[x1, . . . , xn] recursive symbol (5.115)

ασ = µα .∃x⃗⟨x⃗, φ[α/σ]⟩ definition of ασ (5.116)

Before we prove Theorem 5.1, we introduce a useful lemma that allows us to prove
properties about least fixpoint patterns. Recall that rule (Knaster Tarski) allows us to
prove theorems of the form Γ ⊢ µX .φ→ ψ. However, in practice, the least fixpoint pattern
µX .φ is not always the only components on the left hand side, but rather stay within some
contexts. The following lemma is particularly useful in practice, as it allows us to “plug out”
the least fixpoint pattern from its context, so that we can apply (Knaster Tarski). After
that, we may “plug it back” into the context.

Lemma 5.5. Let C[□] be a context such that □ does not occur under any µ’s, and

1. C[φ ∧ ψ] = C[φ] ∧ ψ, for all patterns φ and all predicate patterns ψ;

117

2. C[∃x . φ] = ∃x .C[φ], for all φ and x ̸∈ freeVar(C[□]).

Then we have that Γ ⊢ C[φ]→ ψ if and only if Γ ⊢ φ→ ∃x . x ∧ ⌊C[x]→ ψ⌋.

Proof. We prove both directions simultaneously. Note that it is easy to prove that Γ ⊢ φ =

∃x . (x ∧ (x ∈ φ)) using rules (Membership) in the proof system P (see Figure 2.11).
We start with Γ ⊢ C[φ] → ψ. By the mentioned equality, we get Γ ⊢ C[∃x . (x ∧ (x ∈

φ))]→ ψ. By the properties of C, it becomes Γ ⊢ (∃x .C[x] ∧ x ∈ φ)→ ψ, which, by FOL
reasoning, becomes Γ ⊢ x ∈ φ→ (C[x]→ ψ). Note that x ∈ φ is a predicate pattern, so the
goal is equivalent to Γ ⊢ x ∈ φ→ ⌊C[x]→ ψ⌋.

Now we are almost done. To show the “if” part, we apply (Membership Introduction)
on Γ ⊢ φ→ ∃x . x∧⌊C[x]→ ψ⌋ and obtain Γ ⊢ y ∈ φ→ ∃x . (y ∈ x)∧⌊C[x]→ ψ⌋. Note that
y is a fresh variable and y ̸∈ freeVar(C[x]) ∪ freeVar(ψ), so y ∈ ⌊C[x]→ ψ⌋ = ⌊C[x]→ ψ⌋.
Notice that y ∈ x = (y = x). And we obtain Γ ⊢ y ∈ φ→ ⌊C[y]→ ψ⌋. Done.

To show the “only if” part, we apply some simple FOL reasoning on Γ ⊢ x ∈ φ→ ⌊C[x]→
ψ⌋ and conclude that Γ ⊢ (∃x . (x ∧ x ∈ φ))→ ∃x . (x ∧ ⌊C[x]→ ψ⌋). Then by the equality
φ = ∃x . (x ∧ x ∈ φ), we are done. QED.

Note the conditions about the context C in Lemma 5.5 are important. Many contexts that
arise in practice satisfy the conditions. In particular, (nested) symbol contexts satisfy the
conditions automatically.

Under the above new notation and the lemma, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. (Pre-Fixpoint). This is proved by simply unfolding ασ following
its definition.

(Knaster Tarski). We give the following proof that goes backward from conclusion to
their sufficient conditions.

σ(x1, . . . , xn)→ ψ (5.117)

⇐= ασ[x1, . . . , xn]→ ψ (5.118)

⇐= α→ ∃α . (α ∧ ⌊α[x1, . . . , xn]→ ψ⌋) (5.119)

⇐= ασ → ∀x⃗ . ∃α . (α ∧ ⌊α[x1, . . . , xn]→ ψ⌋)︸ ︷︷ ︸
α0

(5.120)

⇐= ∃x⃗ . ⟨x⃗, φ[∀x⃗ . α0/σ]⟩ → ∀x⃗ . α0 (5.121)

⇐= ⟨x⃗, φ[∀x⃗ . α0/σ]⟩ → α0[z1/x1 . . . zn/xn] (5.122)

⇐= ⟨x⃗, φ[∀x⃗ . α0/σ]⟩ (5.123)

→ ∃α . (α ∧ ⌊α[z1, . . . , zn]→ ψ[z1/x1 . . . zn/xn]⌋) (5.124)

118

⇐= ⟨x⃗, φ[∀x⃗ . α0/σ]⟩[x1, . . . , xn]→ ψ (5.125)

⇐= φ[∀x⃗ . α0/σ]→ ψ (5.126)

⇐= φ[∀x⃗ . α0/σ]→ φ[ψ/σ] (5.127)

Notice that the last step is by Γ ⊢ φ[ψ/σ]→ ψ.
By the positiveness of φ in σ, we just need to prove that for all φ1, . . . , φn:

Γ ⊢ (∀x⃗ . α0)[φ1, . . . , φn]→ ψ[φ1/x1 . . . φn/xn] (5.128)

By (Key-Value) and definition of α0, the above becomes

Γ ⊢z1 ∈ φ1 ∧ · · · ∧ zn ∈ φn ∧ ψ[z1/x1 . . . zn/xn]→ ψ[φ1/x1 . . . φn/xn], (5.129)

which holds by assumption. QED.

What is interesting in the above proof is that we used only (Key-Value) and did not
use (Injectivity) and (Product Domain). The last two axioms are used in the proof
of Theorem 5.2, where we need to establish an isomorphism between models of LFP and
matching µ-logic. In there, the two axioms are needed to constrain matching µ-logic models.

5.15.2 Proof of Theorem 5.2

We first show that the theory of products Γproduct in Definition 5.2 captures precisely the
product set Ms ×Mt.

Now, we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. The proof is mainly based on the isomorphism between LFP models
and matching µ-logic ΓLFP-models. Notice that the (Function) axioms forces symbols in all
ΓLFP-models are functions. In addition, we use the axiom ∀x :Formula∀y :Formula . x = y to
force that the carrier set of Formula must be a singleton set, say, {⋆}.

(The “if” direction). We follow the same idea as we prove that matching logic captures faith-
fully FOL (see [2]), we construct from an LFP model ({MLFP

s }s∈S,ΣLFP,ΠLFP) a corresponding
matching µ-logic ΓLFP model, denoted ({MMmL

s }s∈S ∪ {MMmL
Formula},ΣMmL) with MMmL

s =MLFP
s ,

MMmL
Formula = {⋆}, and ΣMmL consisting of symbols that are all functions. An LFP valuation

ρLFP derives a corresponding matching µ-logic valuation ρMmL such that ρMmL(x) = ρLFP(x)

for all LFP (element) variables x and ρMmL(R) = ρLFP(R)× {⋆}. Our goal is to prove that
for all LFP formulas φ, we have MLFP, ρLFP ⊨LFP φ if and only if |φ|M,ρMmL = {⋆}.

119

Firstly, notice that as shown in [2], |t|M,ρMmL = {ρLFP(t)} for all terms t. Therefore,
to simplify our notation we uniformly use ρ(t) in LFP and matching µ-logic to mean the
evaluation of t. Carry out induction on the structure of φ. The only additional cases (compared
with FOL) are φ ≡ R(t1, . . . , tn) and φ ≡ [lfpR,x1,...,xnψ](t1, . . . , tn). The first case is easy, as
shown in the following reasoning: MLFP, ρLFP ⊨ R(t1, . . . , tn) iff (ρ(t1), . . . , ρ(tn)) ∈ ρLFP(R)

iff (ρ(t1), . . . , ρ(tn), ⋆) ∈ |R|M,ρMmL iff |R(t1, . . . , tn)|M,ρMmL = {⋆}. The second case when
φ ≡ [lfpR,x1,...,xnψ](t1, . . . , tn) is shown as the following reasoning:

MLFP, ρLFP ⊨LFP [lfpR,x1,...,xnψ](t1, . . . , tn) (5.130)

iff (ρ(t1), . . . , ρ(tn)) ∈ (5.131)⋂
{α ⊆MLFP

s1
× · · · ×MLFP

sn | for all ai ∈MLFP
si

, 1 ≤ i ≤ n, (5.132)

MLFP, ρLFP[α/R, a⃗/x⃗] ⊨LFP ψ implies (a1, . . . , an) ∈ α} (5.133)

iff (by induction hypothesis) (5.134)

(ρ(t1), . . . , ρ(tn)) ∈ (5.135)⋂
{α ⊆MMmL

s1
× · · · ×MMmL

sn | for all ai ∈MMmL
si

, 1 ≤ i ≤ n, (5.136)

|ψ|M,(ρ[α/R,⃗a/x⃗])MmL = {⋆} implies (a1, . . . , an) ∈ α} (5.137)

iff (by definition of (ρ[α/R, a⃗/x⃗])MmL) (5.138)

(ρ(t1), . . . , ρ(tn)) ∈ (5.139)⋂
{α+ ⊆MMmL

s1
× · · · ×MMmL

sn × {⋆} | (5.140)

for all ai ∈MMmL
si

, 1 ≤ i ≤ n, (5.141)

|ψ|M,ρMmL[α+/R,⃗a/x⃗] = {⋆} implies (a1, . . . , an, ⋆) ∈ α+} (5.142)

iff (by reasoning about sets) (5.143)

(ρ(t1), . . . , ρ(tn)) ∈ (5.144)⋂
{α+ ⊆MMmL

s1
× · · · ×MMmL

sn × {⋆} | (5.145)⋃
ai∈MMmL

si

(a1, . . . , an, |ψ|M,ρMmL[α+/R,⃗a/x⃗]) ⊆ α+} (5.146)

iff (by matching µ-logic semantics) (5.147)

(ρ(t1), . . . , ρ(tn)) ∈ (5.148)

|µR : s1⊗. . .⊗sn⊗Formula . ∃x1 . . . ∃xn . ⟨x1, . . . , xn, ψ⟩|M,ρMmL , (5.149)

and the last statement is equal to |[lfpR,x1,...,xnψ](t1, . . . , tn)|M,ρMmL .
And now we conclude that ΓLFP ⊨ φ implies ⊨LFP φ. Otherwise, there exists an LFP

120

model MLFP and valuation ρLFP such that MLFP, ρLFP ̸⊨LFP φ, and this implies that in the
ΓLFP-model MMmL, we have |φ|M,ρMmL ̸= {⋆}, meaning that ΓLFP ̸⊨ φ.

(The “only if” part). Notice the axiom ∀x :Formula∀y :Formula . x = y forces thatMFormula =

{⋆} must be a singleton set, which ensures that the above translation from an LFP model
MLFP to a matching µ-logic model MMmL can go backward. Specifically, for every matching
µ-logic function symbol f ∈ ΣMmL

s1...sn,s
, we construct from its interpretation fMMmL : Ms1 ×

· · · ×Msn → P(Ms), the corresponding LFP function fMLFP : Ms1 × · · · ×Msn → Ms such
that fMMmL(a1, . . . , an) = {fMLFP(a1, . . . , an)}. Similarly, for every matching µ-logic function
symbol π ∈ ΣMmL

s1...sn,Formula, we construct from its interpretation πMMmL : Ms1 × · · · ×Msn →
{∅, {⋆}}, the corresponding LFP predicate πMLFP ⊆ Ms1 × · · · ×Msn , such that πMLFP ⊆
Ms1 × · · · ×Msn = {(a1, . . . , an) | πMMmL(a1, . . . , an) = {⋆}}. Then we carry out the same
reasoning as in the “if” part. QED.

5.15.3 Proof of Theorem 5.3

Proof. We only need to prove that for every s and h, s, h ⊨SL p(x1, . . . , xn) if and only if
h ∈ |p(x1, . . . , xn)|Map,ρs , where ρs(x) = s(x) for all x. We conduct structural induction on φ.
The case when φ ≡ p(φ1, . . . , φn) where p is a recursive predicate is proved directly by the
definition of the canonical model Map. The other cases have been proved in [2, Proposition
9.2]. QED.

5.15.4 Proof of Proposition 5.2

Proof of Proposition 5.2. We simply apply definitions. Recall that s ∈ •T (t) iff s R t.
(Case “•”). s ∈ |•φ|T,ρ iff there exists t ∈ |φ|T,ρ such that s ∈ •T (t) iff there exists t such

that s R t and t ∈ |φ|T,ρ.
(Case “◦”). s ∈ |◦φ|T,ρ iff s ∈ |¬•¬φ|T,ρ iff s ̸∈ |•¬φ|T,ρ iff (use (Case “•”)) for all t,

t ∈ |¬φ|T,ρ implies s ̸∈ •T (t) iff for all t, s ∈ •T (t) implies t ∈ |φ|T,ρ iff for all t, s R t implies
t ∈ |φ|T,ρ.

(Case “⋄”). Note that | ⋄ φ|T,ρ =
⋂
{A ⊆ S | |φ ∨ •X|T,ρ[A/X] ⊆ A} =

⋂
{A ⊆ S |

|φ|T,ρ ∪ •T (A) ⊆ A}. On the other hand, {s ∈ S | ∃t ∈ S such that t ∈ |φ|T,ρ and s R∗ t} =
{s ∈ S | ∃t ∈ S,∃n ≥ 0 such that t ∈ |φ|T,ρ and s Rn t} = {s ∈ S | ∃n ≥ 0 such that s ∈
•nT (|φ|T,ρ)} =

⋃
n≥0 •nT (|φ|T,ρ). Therefore, we just need to prove the two sets:

(η) ≡
⋂
{A ⊆ S | |φ|T,ρ ∪ •T (A) ⊆ A} (5.150)

121

(ξ) ≡
⋃
n≥0

•nT (|φ|T,ρ) (5.151)

are equal. This can be directly proved by Knaster-Tarski theorem.
(Case “□”). Similar to (Case “⋄”).
(Case “φ1 U φ2”). As in (Case “⋄”), we define two sets:

(η) ≡ |φ1 U φ2|T,ρ =
⋂
{A ⊆ S | |φ2|T,ρ ∪ (|φ1 ∩ •T (A)|T,ρ) ⊆ A} (5.152)

(ξ) ≡ {s ∈ S | exist n ≥ 0 and t1, . . . , tn ∈ S such that (5.153)

s R t1 R . . . R tn, and s, t1, . . . , tn−1 ∈ |φ1|T,ρ, tn ∈ |φ2|T,ρ} (5.154)

and then use Knaster-Tarski theorem to prove them equal.
(Case “WF”). Again, we define two sets:

(η) ≡ |µX . ◦X|T,ρ =
⋂
{A ⊆ S | (S \ A) ⊆ •T (S \ A)} (5.155)

(ξ) ≡ {s ∈ S | s has no infinite path} (5.156)

and then use Knaster-Tarski theorem to prove them equal. QED.

5.15.5 Proof of Theorem 5.11

Let us first review some characteristic sub-classes of transition systems.

Definition 5.7. A transition system T = (S,R) is:

1. well-founded if for all s ∈ S, there is no infinite path from s;

2. non-terminating, if for all s ∈ S there is t ∈ S such that s R t.

3. linear, if for all s ∈ S and t1, t2 ∈ S such that s R t1 and s R t2, then t1 = t2.

Lemma 5.6. ⊢infLTL φ implies ΓinfLTL ⊢ φ.

Proof. We just need to prove that all proof rules in Figure 2.5 can be proved in ΓinfLTL.
(Taut) and (MP). Trivial.
(K◦) and (N◦). By Proposition 3.2.
(K□) and (N□). Proved by applying (Knaster Tarski) first, followed by simple proposi-

tional and modal logic reasoning.
(Fun, “→”). Proved from axiom (Inf) •⊤ and simple modal logic reasoning.

122

(Fun, “←”). Exactly axiom (Lin).
(U1). By (Knaster Tarski) followed by propositional reasoning.
(U2). By definition of φ1 U φ2 as a least fixpoint and (Fun).
(Ind). By (Knaster Tarski). QED.

Lemma 5.7. s ⊨infLTL φ if and only if s ∈ |φ|T,V .

Proof. We make two interesting observations. Firstly, it suffices to prove merely the “only if”
part. The “if” part follows by considering the “only if” part on ¬φ.

Secondly, the definition of “s ⊨infLTL φ” is an inductive one, meaning that “⊨infLTL” is the
least relation that satisfies the five conditions in Definition 2.31. To show that “s ⊨infLTL φ

implies s ∈ |φ|T,V ”, it suffices to show that s ∈ |φ|T,V satisfies the same conditions. This is
easily followed by Proposition 5.2.

Note how interesting that this lemma is proved by applying Knaster-Tarski theorem in the
meta-level. QED.

Corollary 5.1. ΓinfLTL ⊨ φ implies ⊨infLTL φ.

Proof. Assume the opposite and there exists a transition system T = (S,R) that is linear
and non-terminating, a valuation V , and a state s ∈ S such that s ̸⊨infLTL φ. By Lemma 5.7,
s ̸∈ |φ|T,V , meaning that T ̸⊨ φ. Since T is non-terminating and linear, the axioms (Inf) and
(Lin) hold in T , and thus ΓinfLTL ̸⊨ φ. Contradiction. QED.

Now we are ready to prove Theorem 5.11.

Proof of Theorem 5.11. Use Lemma 5.6 and Corollary 5.1, as well as the soundness of
matching µ-logic proof system and the completeness of infinite-trace LTL proof system.

QED.

5.15.6 Proof of Theorem 5.12

Lemma 5.8. ⊢finLTL φ implies ΓfinLTL ⊢ φ.

Proof. We just need to prove all proof rules in Figure 2.6 can be proved by axioms (Fin)
and (Lin) in matching µ-logic. We skip the ones that have shown in Lemma 5.6.

(¬◦). Proved by axiom (Lin).
(coInd). Use axiom (Fin) µX . ◦X and to prove ΓfinLTL ⊢ µX . ◦X → φ by (Knaster

Tarski).
(Fix). By definition of φ1 W φ2 as a least fixpoint. QED.

123

Lemma 5.9. s ⊨finLTL φ if and only if s ∈ |φ|T,V .

Proof. As in Lemma 5.7, we just need to prove the “only if” part, by showing that s ∈ |φ|T,V
satisfies the five conditions in Definition 2.33. This is easily followed by Proposition 5.2. The
case φ1 W φ2 shall be proved by directly applying matching µ-logic semantics. QED.

Corollary 5.2. ΓfinLTL ⊨ φ implies ⊨finLTL φ.

Proof. Assume the opposite and use Lemma 5.9. QED.

Now we can prove Theorem 5.12.

Proof of Theorem 5.12. Use Lemma 5.8 and Corollary 5.2, as well as the soundness of the
matching µ-logic proof system and the completeness of finite-trace LTL proof system. QED.

5.15.7 Proof of Theorem 5.13

Lemma 5.10. ⊢CTL φ implies ΓCTL ⊢ φ.

Proof. We just need to prove all CTL rules from the axiom (Inf) in matching µ-logic. We
skip the first 7 rules as they are simple. The rest 3 rules can be proved by applying (Knaster

Tarski) and use properties in Properties 5.6. QED.

Lemma 5.11. s ⊨CTL φ if and only if s ∈ |φ|T,V .

Proof. As in Lemma 5.7, we just need to prove the “only if” part by showing that s ∈ |φ|T,V
satisfies all seven conditions in Definition 2.35. The first 5 of them are simple. We show the
last two ones about “EU” and “AU”.

(Case EU). Assume there exists a path s0s1 . . . and k ≥ 0 such that sk ∈ |φ2|T,V and
s0, . . . , sk−1 ∈ |φ1|T,V . Our goal is to show s0 ∈ |φ1 EU φ2|T,V . By semantics of matching µ-
logic, |φ1 EUφ2|T,V = |µX .φ2∨ (φ1∧•X)|T,V =

⋂
{A ⊆ S | |φ2|T,V ∪ (|φ1|T,V ∩•T (A)) ⊆ A}.

Therefore, it suffices to prove that s0 ∈ A for all A ⊆ S such that |φ2|T,V ⊆ A and
|φ1|T,V ∩•T (A) ⊆ A. This is easy, sk ∈ |φ2|T,V ⊆ A implies sk−1 ∈ •T (sk). Also, sk−1 ∈ |φ1|T,V
by assumption. Then sk−1 ∈ |φ1|T,V ∩ •T (sk) ⊆ A. Repeat this procedure for k times and we
obtain s0 ∈ A. Done.

(Case AU). Let us denote ◦T (A) = {s ∈ S | for all t ∈ S such that s R t, t ∈ A} to
be the “interpretation” of “all-path next ◦” in T . Prove by contradiction. Assume the
opposite statement that s0 ̸∈ |φ1 AU φ2|T,V = |µX .φ2 ∨ (φ1 ∧ ◦X)|T,V =

⋂
{A ⊆ S |

|φ2|T,V ∪ (|φ1|T,V ∩ ◦T (A)) ⊆ A}. This means that there exists A ⊆ S such that |φ2|T,V ⊆ A

and |φ1|T,V ∩ ◦T (A) ⊆ A, and s0 ̸∈ A. This is going to cause contradiction. Firstly by

124

|φ2|T,V ⊆ A, s0 ̸∈ |φ2|T,V , which implies that s0 ∈ |¬φ2|T,V . Secondly by |φ1|T,V ∩◦T (A) ⊆ A,
we know that (S \ A) ⊆ |¬φ1|T,V ∪ •T (S \ A). Since s0 ̸∈ A, we know either s0 ∈ |¬φ1|T,V
or s0 ∈ •T (S \ A). If it is the first case, then we have a contradiction as any path starting
from s0 contradicts with the condition. If it is the second case, then there exists a state,
say s1, such that s0 R s1 and s1 ̸∈ A, which also implies s1 ̸∈ |φ2|T,V . Repeat this process
and obtain a sequence of state s0s1 If the sequence is finite, say s0s1 . . . sn, then by
construction s0, . . . , sn ̸∈ |φ2|T,V and sn ∈ |¬φ1|T,V , which is a contradiction to the condition.
If the sequence is infinite, then by construction s0s1 . . . satisfies that s0, s1, ̸∈ |φ2|T,V , which
also contradicts to the condition. QED.

Corollary 5.3. ΓCTL ⊨ φ implies ⊨CTL φ.

Proof. Use Lemma 5.11 and prove by contradiction. Note that it is easy to verify that
T ⊨ ΓCTL if T is non-terminating. QED.

Now we are ready to prove Theorem 5.13.

Proof of Theorem 5.13. Use Lemma 5.10 and Corollary 5.3, as well as soundness of matching
µ-logic and completeness of CTL. QED.

5.15.8 Proof of Theorem 5.14

Lemma 5.12. ⊢DL φ implies ΓDL ⊢ φ.

Proof. We just need to prove that all proof rules in Figure 2.8 can be proved in ΓDL. First of
all, rules (DL3) to (DL6) follow from (syntactic sugar) definitions. Rules (Taut) and (MP)
are trivial, We only prove (DL1), (DL2), (DL7), and (Gen).

Notice that [α]φ is defined a syntactic sugar based on the structure of α. Therefore, we
carry out structure induction on α. We should be careful to prevent circular reasoning. Our
proving strategy is to prove (Gen) first, and then prove (DL1) and (DL2) simultaneously,
and finally prove (DL7).

(Gen). Carry out induction on α. All cases are trivial. Notice the case when α ≡ β∗ is
proved by proving ΓDL ⊢ φ→ [α∗]φ using (Knaster Tarski). After simplification, the goal
becomes ΓDL ⊢ φ → [β]φ. This is proved by applying induction hypothesis, which shows
ΓDL ⊢ [β]φ.

(DL1) and (DL2). We prove both rules simultaneously by induction on α. We discuss
only interesting cases and skip the trivial ones. (DL1, α ≡ β1 ; β2) is proved from induction
hypothesis, by applying (Gen) on [β1]. (DL1, α ≡ β∗) is proved by applying (Knaster

125

Tarski), following by applying (DL2, “→”) on [β]. (DL2, α ≡ β∗, “→”) is proved by
(Knaster Tarski). (DL2, α ≡ β∗, “←”) is proved by (Knaster Tarski), followed by
(DL2) on [β].

(DL7) is proved directly by (Knaster Tarski), followed by (DL2, “←”) on [α].
QED.

We now connect the semantics of DL with the semantics of matching µ-logic. First of all,
we show that the transition system T = (S, {Ra}a∈APgm) can be regarded as a ΣLTS-model,
where S is the carrier set of State and APgm (the set of atomic programs) is the carrier set
of Pgm. The “one-path next • ∈ ΣPgmState,State is interpreted according to DL semantics for
all t ∈ S and a ∈ APgm:

•T (a, t) = {s ∈ S | (s, t) ∈ Ra}. (5.157)

In addition, valuation V : AP → P(S) can be regarded as a matching µ-logic valuation
(where we safely ignore the valuations of element variables because they do not appear in DL
syntax).

Lemma 5.13. Under the above notations, [[φ]]TV = |φ|T,V .

Proof. As in Lemma 5.7, we just need to prove that [[φ]]TV ⊆ |φ|T,V by showing that |φ|T,V
satisfies the conditions in Definition 2.37. The only interesting case is to show |[α]φ|T,V =

{s ∈ S | for all t ∈ S, (s, t) ∈ [[α]]TV implies t ∈ |φ|T,V }. We prove it by carrying out structural
induction on the DL program formula α. The case when α ≡ a for a ∈ APgm is easy. The
cases when α ≡ β1 ; β2, α ≡ β1 ∪ β2, and α ≡ ψ? follows directly by basic analysis about
sets and using definition of the semantics of DL program formulas. The interesting case is
when α ≡ β∗. In this case we should prove |[β∗]φ|T,V = |νX . φ ∧ [β]X|T,V =

⋃
{A | A ⊆

|φ|T,V ∩ |[β]X|T,V [A/X]} =
⋃
{A | A ⊆ |φ|T,V ∩ {s | for all t, (s, t) ∈ [[β]]TV implies t ∈ S}} ?

=

{s | for all t, (s, t) ∈ [[β∗]]TV implies t ∈ |φ|T,V } We denote the left-hand side of “ ?
=” as (η) and

the right-hand side as (ξ).
To prove (η) = (ξ), we prove containment from both directions.
(Case (η) ⊆ (ξ)). This is proved by considering an s ∈ (η) and show s ∈ (ξ). By construction

of (η), there exists A ⊆ S such that A ⊆ |φ|T,V ∩ {s | for all t, (s, t) ∈ [[β]]TV implies t ∈ A},
and that s ∈ A. In order to prove s ∈ (ξ), we assume t ∈ S such that (s, t) ∈ ([[β]]TV)

∗ and try
to prove t ∈ |φ|T,V . By definition, there exists k ≥ 0 and s0, . . . , sk such that s = s0, t = sk,
and (si, si+1) ∈ [[β]]TV for all 0 ≤ i < k. By induction and the property of A, and that s0 ∈ A,
we can prove that s0, s1, . . . , sk ∈ |φ|T,V , and thus t ∈ |φ|T,V . Done.

126

(Case (ξ) ⊆ (η)). Notice that the set η is defined as a greatest fixpoint, so it suffices to
show that (ξ) satisfies the condition, i.e., to prove that (ξ) ⊆ |φ|T,V ∩ {s | for all t, (s, t) ∈
[[β]]TV implies t ∈ (ξ)}. This can be easily proved by the definition of (ξ). Done. QED.

Corollary 5.4. ΓDL ⊨ φ implies ⊨DL φ.

Proof. Use Lemma 5.13, and for the sake of contradiction, assume the opposite. Suppose
there exists T = (S, {Ra}a∈APgm) and a valuation V and a state s such that s ̸∈ [[φ]]TV . We
then know s ̸∈ |φ|T,V , which implies that T ̸⊨ φ. Obviously T ⊨ ΓDL as the theory ΓDL

contains no addition axioms. This means that ΓDL ̸⊨ φ. QED.

We are ready to prove Theorem 5.14.

Proof of Theorem 5.14. Use Lemma 5.12 and Corollary 5.4, as well as soundness of matching
µ-logic and completeness of DL. QED.

5.15.9 Proof of Theorem 5.15

As a review, we have defined the following notations:

“one-path next” •φ, where • ∈ ΣCfg,Cfg (5.158)

“all-path next” ◦φ ≡ ¬•¬φ (5.159)

“eventually” ⋄ φ ≡ µX .φ ∨ •X (5.160)

“always” □φ ≡ νX . φ ∧ ◦X (5.161)

“well-founded” WF ≡ µX . ◦X (5.162)

“weak eventually” ⋄w φ ≡ νX . φ ∨ •X (5.163)

Proposition 5.6. The following propositions hold:

1. ⊢ •⊥ ↔ ⊥

2. ⊢ •(φ1 ∨ φ2)↔ •φ1 ∨ •φ2

3. ⊢ •(∃x . φ)↔ ∃x . •φ

4. ⊢ ◦⊤ ↔ ⊤

5. ⊢ ◦(φ1 ∧ φ2)↔ ◦φ1 ∧ ◦φ2

6. ⊢ ◦(∀x . φ)↔ ∀x . ◦φ

127

7. ⊢ φ→ ⋄φ and ⊢ • ⋄ φ→ ⋄φ

8. ⊢ □φ→ φ and ⊢ □φ→ ◦□φ

9. ⊢ φ→ ⋄wφ and ⊢ • ⋄w φ→ ⋄wφ

10. Γ ⊢ φ1 → φ2 implies Γ ⊢ ⋆φ1 → ⋆φ2 where ⋆ ∈ {•, ◦, ⋄,□, ⋄w}

11. ⊢ ⋄⊥ ↔ ⊥

12. ⊢ ⋄(φ1 ∨ φ2)↔ ⋄φ1 ∨ ⋄φ2

13. ⊢ ⋄(∃x . φ)↔ ∃x . ⋄ φ

14. ⊢ □⊤ ↔ ⊤

15. ⊢ □(φ1 ∧ φ2)↔ □φ1 ∧□φ2

16. ⊢ □(∀x . φ)↔ ∀x .□φ

17. ⊢ □φ↔ ¬ ⋄ ¬φ

18. ⊢ ◦φ1 ∧ •φ2 → •(φ1 ∧ φ2)

19. ⊢ ◦(φ1 → φ2) ∧ •φ1 → •φ2

20. ⊢ ⋄wφ↔ (WF→ ⋄φ)

21. ⊢ ⋄w(φ1 ∨ φ2)↔ ⋄wφ1 ∨ ⋄wφ2

22. ⊢ ⋄w(∃x . φ)↔ ∃x . ⋄w φ

23. ⊢ ⋆ ⋆ φ↔ ⋆φ where ⋆ ∈ {⋄,□, ⋄w}

24. ⊢ WF↔ µX . ◦kX when k ≥ 1

25. ⊢ WF↔ µX . ◦□X

26. ⊢ □φ1 ∧ ⋄wφ2 → ⋄w(φ1 ∧ φ2)

27. ⊢ □(φ1 → φ2) ∧ φ1 → φ2

128

Proof. We prove them in order.
(1–3) follows from (Propagation), and (Framing).
(4–6) are proved from (1–3) and that ◦φ ≡ ¬•¬φ.
(7) is proved by (Pre-Fixpoint) that ⊢ φ ∨ • ⋄ φ→ ⋄φ.
(8) is proved by (Pre-Fixpoint) that ⊢ □φ→ φ ∧ •□φ.
(9) is proved by (Knaster Tarski) that ⊢ φ ∨ • ⋄w φ→ ⋄wφ.
(10, when ⋆ is •) is exactly (Framing).
(10, when ⋆ is ◦) is exactly Proposition 3.2.
(10, when ⋆ is ⋄) requires us to prove Γ ⊢ ⋄φ1 → ⋄φ2. By (Knaster Tarski), it suffices

to prove Γ ⊢ φ1 ∨ • ⋄ φ2 → ⋄φ2, which is proved by (7).
(10, when ⋆ is □) requires us to prove Γ ⊢ □φ1 → □φ2. By (Knaster Tarski), it suffices

to prove Γ ⊢ □φ1 → φ1 ∧ •□φ2, which is proved by (8).
(10, when ⋆ is ⋄w) requires us to prove Γ ⊢ ⋄wφ1 → ⋄wφ2. By (Knaster Tarski), it

suffices to prove Γ ⊢ ⋄wφ1 → φ1 ∨ • ⋄w φ2, which is proved by (Pre-Fixpoint).
(11, “→”) is proved by (Knaster Tarski).
(11,“←”) is trivial.
(12, “→”) is proved by (Knaster Tarski), followed by (2) to propagate “•” through “∨”,

and finished with (7).
(12, “←”) is prove by (10, when ⋆ is ⋄).
(13, “→”) is proved by (Knaster Tarski), followed by (3) to propagate “•” through “∃”,

and finished with (7).
(13, “←”) is proved by (10, when ⋆ is ⋄).
(14–16) are proved similar to (11–13).
(17, both directions) are proved by (Knaster Tarski) followed by (Pre-Fixpoint).
(18) is proved by ◦φ ≡ ¬•¬φ and (Propagation).
(19) is proved by (18) followed by (10).
(20, “→”) is proved by proving ⊢ WF → (⋄wφ → ⋄φ), which is proved by (Knaster

Tarski) followed by (19).
(20, “←”) is proved by (Knaster Tarski), followed by (2) to propagate “•” through “∨”.

After some additional propositional reasoning, we obtain two proof goals: ⊢ ⋄φ→ φ ∨ • ⋄ φ
and ⊢ ◦WF→ WF. The former is proved by (Knaster Tarski) and the latter is exactly
(Pre-Fixpoint).

(21, “→”) is proved by applying (20) everywhere followed by (12).
(21, “←”) is proved by (10, when ⋆ is ⋄w).
(22, “→”) is proved by applying (20) everywhere followed by (13).
(22, “←”) is proved by (10, when ⋆ is ⋄w).

129

(23, when ⋆ is ⋄, “→”) is proved by (Knaster Tarski) followed by (7).
(23, when ⋆ is ⋄, “←”) is proved by (7) and (10).
(23, when ⋆ is □, “→”) is proved by (8) and (10).
(23, when ⋆ is □, “←”) is proved by (Knaster Tarski) followed by (8).
(23, when ⋆ is ⋄w, “→”) is proved by applying (Knaster Tarski) first. Then we need to

prove ⊢ ⋄w ⋄w φ→ φ∨•⋄w ⋄wφ. By (Pre-Fixpoint), we know ⊢ ⋄w ⋄w φ→ ⋄wφ∨•⋄w ⋄wφ.
Thus, it suffices to prove ⊢ ⋄wφ∨•⋄w ⋄wφ→ φ∨•⋄w ⋄wφ. By propositional reasoning, we just
need to prove ⊢ ⋄wφ→ φ∨ • ⋄w ⋄wφ. By (Knaster Tarski), we know ⊢ ⋄wφ→ φ∨ • ⋄w φ,
so it suffices to prove ⊢ φ∨•⋄wφ→ φ∨•⋄w ⋄wφ. Again by propositional reasoning, it suffices
to prove ⊢ • ⋄w φ → φ ∨ • ⋄w ⋄wφ, which can be proved by proving ⊢ • ⋄w φ → • ⋄w ⋄wφ,
which is finally proved by (9) and (10).

(23, when ⋆ is ⋄w, “←”) is proved by (9) and (10).
Note it is sufficient to prove (24) only for the case k = 1.
(24, “→”) is proved by applying (Knaster Tarski) and (Pre-Fixpoint) first. Then we

need to prove ⊢ µX . ◦◦X → ◦µX . ◦◦X. Apply (Knaster Tarski) again, and finished by
(Pre-Fixpoint).

(24, “←”) is proved by applying (Knaster Tarski) followed by (Pre-Fixpoint).
(25, “→”) is proved by applying (Knaster Tarski) followed by (Pre-Fixpoint). Then

we obtain ⊢ µX . ◦□X → □µX . ◦□X. Apply (Knaster Tarski) on □, and we obtain
⊢ µX . ◦□X → ◦□µX . ◦□X, finished by (Pre-Fixpoint).

(25, “←”) is proved by (8), (10), and then apply Lemma 4.3.
(26) is proved by applying (Knaster Tarski) firstly. After propositional reasoning, we

obtain two goals: ⊢ □φ1∧⋄wφ2 → φ1∨•(□φ1∧⋄wφ2) and ⊢ □φ1∧⋄wφ2 → φ2∨•(□φ1∧⋄wφ2).
The first goal is easily proved by (8). The second goal is by unfolding “⋄wφ2” and “□φ1”, and
then use (18).

(27) is proved by (8). QED.

Lemma 5.14. A ⊢C φ1 ⇒ φ2 implies ΓRL ⊢ RL2MmL(A ⊢C φ1 ⇒ φ2).

Proof. We need to prove that all reachability logic proof rules in Figure 2.12 are provable in
matching µ-logic.

(Axiom). We prove for the case when C ̸= ∅. The case when C = ∅ is the same. Our goal,
after translation, is ΓRL ⊢ ∀⊡A ∧ ∀⊡C → (φ1 → • ⋄w φ2). By assumption, φ1 ⇒ φ2 ∈ A,
and thus we just need to prove ΓRL ⊢ ∀(φ1 → • ⋄w φ2)→ (φ1 → • ⋄w φ2), which is trivial by
FOL reasoning.

(Reflexivity). Notice that C = ∅ in this rule. Our goal, after translation, is ΓRL ⊢
∀⊡A→ (φ→ ⋄wφ), which is true by Proposition 5.6.

130

(Transitivity, C = ∅). Our goal, after translation, is ΓRL ⊢ ∀⊡A→ (φ1 → ⋄wφ3). Our
two assumptions are ΓRL ⊢ ∀⊡A→ (φ1 → ⋄wφ2) and ΓRL ⊢ ∀⊡A→ (φ2 → ⋄wφ3). From the
latter assumption and Proposition 5.6, we have ΓRL ⊢ ∀⊡A→ (⋄wφ2 → ⋄w ⋄w φ3), and then
by propositional reasoning and the former assumption we have ΓRL ⊢ ∀⊡A→ (φ1 → ⋄w⋄wφ3).
Finally, by Proposition 5.6 we have ΓRL ⊢ ∀⊡A→ (φ1 → ⋄wφ3), which is what we want to
prove.

(Transitivity, C ̸= ∅). Our goal, after translation, is ΓRL ⊢ ∀⊡A ∧ ∀◦⊡C → (φ1 →
• ⋄w φ3). Our two assumptions are ΓRL ⊢ ∀⊡A ∧ ∀◦⊡C → (φ1 → • ⋄w φ2) and ΓRL ⊢
∀⊡A∧∀⊡C → (φ2 → ⋄wφ3). From the first assumption, we have ΓRL ⊢ ∀⊡A∧∀◦⊡C∧φ1 →
∀⊡A ∧ ∀◦⊡C ∧ • ⋄w φ2, and thus by propositional reasoning, it suffices to prove that
ΓRL ⊢ ∀⊡A∧∀◦⊡C∧•⋄wφ2 → •⋄wφ3. From the second assumption and Proposition 5.6(10),
we know that ΓRL ⊢ • ⋄w (∀⊡A ∧ ∀⊡C ∧ φ2) → • ⋄w ⋄wφ3, which by Proposition 5.6(23),
implies ΓRL ⊢ • ⋄w (∀⊡A ∧ ∀⊡C ∧ φ2) → • ⋄w φ3. Then, it suffices to prove ΓRL ⊢ ∀⊡A ∧
∀◦⊡C ∧ • ⋄w φ2 → • ⋄w (∀⊡A ∧ ∀⊡C ∧ φ2). The rest is easy, since by Proposition 5.6(8), we
just need to prove ΓRL ⊢ ∀◦⊡A ∧ ∀◦⊡C ∧ • ⋄w φ2 → • ⋄w (∀⊡A ∧ ∀⊡C ∧ φ2), which then by
Proposition 5.6(18) becomes ΓRL ⊢ •(∀⊡A ∧ ∀⊡C ∧ ⋄wφ2)→ • ⋄w (∀⊡A ∧ ∀⊡C ∧ φ2), and
then by Proposition 5.6(10) becomes ΓRL ⊢ ∀⊡A ∧ ∀⊡C ∧ ⋄wφ2 → ⋄w(∀⊡A ∧ ∀⊡C ∧ φ2),
which is proved by Proposition 5.6(26).

(Logic Framing). We prove for the case when C ≠ ∅. The case when C = ∅ is the
same. Our goal, after translation, is ΓRL ⊢ ∀⊡A ∧ ∀◦⊡C → (φ1 ∧ ψ → • ⋄w (φ2 ∧ ψ)).
Our assumption is ΓRL ⊢ ∀⊡A ∧ ∀◦⊡C → (φ1 → • ⋄w φ2). Notice that FOL formula ψ is
a predicate pattern, so ⊢ • ⋄w (φ2 ∧ ψ) ↔ (• ⋄w φ2) ∧ ψ, and the rest is by propositional
reasoning. The condition that ψ is a FOL formula (and thus a predicate pattern) is crucial
to propagate ψ throughout its context.

(Consequence). This is the only rule where axioms in ΓRL is actually used. Again, we
prove for the case C ̸= ∅ as the case when C = ∅ is the same. Our goal, after translation,
is ΓRL ⊢ ∀⊡A ∧ ∀◦⊡C → (φ1 → • ⋄w φ2). Our three assumptions include MCfg ⊨ φ1 → φ′

1,
MCfg ⊨ φ′

2 → φ2, and ΓRL ⊢ ∀⊡A ∧ ∀◦⊡C → (φ′
1 → • ⋄w φ′

2). Notice that by definition of
ΓRL, we know immediately that φ1 → φ′

1 ∈ ΓRL and φ′
2 → φ2 ∈ ΓRL. The rest of the proof is

simply by Proposition 5.6(10) and some propositional reasoning.
(Case Analysis). Simply by some propositional reasoning.
(Abstraction). Simply by some FOL reasoning. Notice that ∀⊡A and ∀⊡C are closed

patterns.
(Circularity). We prove for the case when C ̸= ∅, as the case when C = ∅ is the

same. Our goal, after translation, is ΓRL ⊢ ∀⊡A ∧ ∀◦⊡C → (φ1 → • ⋄w φ2). By FOL
reasoning and Proposition 5.6(20,2,25), the goal becomes ΓRL ⊢ µX . ◦□X → ∀⊡A∧∀◦⊡C →

131

∀(φ1 → • ⋄w φ2). By (Knaster Tarski) and some FOL reasoning, it suffices to prove
ΓRL ⊢ ◦□(∀⊡A ∧ ∀◦⊡C → ∀(φ1 → • ⋄w φ2)) ∧ ∀⊡A ∧ ∀◦⊡C → (φ1 → • ⋄w φ2). Our
assumption, after translation, is ΓRL ⊢ ∀⊡A∧∀◦⊡C∧∀◦(φ1 → •⋄wφ2)→ (φ1 → •⋄wφ2), so
it suffices to prove ΓRL◦□(∀⊡A∧∀◦⊡C → ∀(φ1 → •⋄wφ2))∧∀⊡A∧∀◦⊡C → ∀⊡A∧∀◦⊡C∧
∀◦(φ1 → •⋄wφ2), which by some propositional reasoning becomes ΓRL ⊢ ◦□(∀⊡A∧∀◦⊡C →
∀(φ1 → • ⋄w φ2)) ∧ ∀⊡A ∧ ∀◦⊡C → ∀◦(φ1 → • ⋄w φ2). By Proposition 5.6(8), it becomes
ΓRL ⊢ ◦□(∀⊡A ∧ ∀◦⊡C → ∀(φ1 → • ⋄w φ2)) ∧ ◦∀⊡A ∧ ◦∀◦⊡C → ∀◦(φ1 → • ⋄w φ2), and
by Proposition 5.6(5,6,10), it becomes ΓRL ⊢ □(∀⊡A ∧ ∀◦⊡C → ∀(φ1 → • ⋄w φ2)) ∧ ∀⊡A ∧
∀◦⊡C → ∀(φ1 → • ⋄w φ2), which is proved by Proposition 5.6(27). QED.

Corollary 5.5. S ⊢∅ φ1 ⇒ φ2 implies ΓRL ⊢ RL2MmL(S ⊢∅ φ1 ⇒ φ2).

Proof. Let A = S and C = ∅ in Lemma 5.14. QED.

Lemma 5.15. ΓRL ⊨ RL2MmL(S ⊢∅ φ1 ⇒ φ2) implies S ⊨RL φ1 ⇒ φ2.

Proof. Let T = (MCfg
Cfg , R) be the transition system that is yielded by S. We tactically use

the same letter T to mean the extended ΣRL-model MCfg with • ∈ ΣCfg,Cfg be interested
as the transition relation R. Then T ⊨ ΓRL, because all axioms in ΓRL are about only the
configuration model MCfg and says nothing about the transition relation R. Since MCfg ⊨ ΓCfg

(by definition), then T ⊨ ΓCfg. By condition of the lemma, T ⊨ RL2MmL(S ⊢∅ φ1 ⇒ φ2),
i.e., T ⊨ ∀⊡S → φ1 → ⋄wφ2. By construction of T , for all rules ψ1 ⇒ ψ2 ∈ S, we have
T ⊨ ψ1 → •ψ2 (in MmL), which implies T ⊨ ∀□(ψ1 → ⋄wψ2), meaning that T ⊨ ∀⊡S.
Therefore, T ⊨ φ1 → ⋄wφ2 (in MmL), which is exactly the same meaning as T ⊨RL φ1 ⇒ φ2

(in RL). QED.

Finally, we are ready to prove Theorem 5.15.

Proof of Theorem 5.15. Following the same road map as in the proof of Theorem 5.10, where
(2) ⇒ (3) is given by Corollary 5.5 and (5) ⇒ (6) is given by Lemma 5.15. The rest is by
the sound and (relative) completeness of RL. Notice that technical assumptions of [12] are
needed for the completeness result of RL. QED.

132

Chapter 6: REASONING ABOUT FIXPOINTS IN MATCHING µ-LOGIC

Automation of fixpoint reasoning has been extensively studied for various mathematical
structures, logical formalisms, and computational domains, resulting in specialized fixpoint
provers and proof techniques for heaps [27, 113, 114, 115, 116, 117], for streams [118], for
term algebras [52], for temporal properties [119], for program reachability correctness [12],
and for many other systems and inductive/coinductive properties. However, in spite of great
theoretical and practical interest, there is no unifying framework for automated fixpoint
reasoning.

Using matching µ-logic, we envision a unifying automated proof framework for fixpoint
reasoning, as shown in Figure 6.1. Proofs are done using a fixed set of proof rules that
accomplish fixpoint reasoning, in addition to standard FOL reasoning, domain reasoning,
frame reasoning, context reasoning, etc, for matching µ-logic, independently of the underlying
theory. This way, automated reasoning becomes proof search over the fixed set of proof
rules, taking as input a logical theory ΓL that defines/encodes a certain logical system or
programming language L in matching µ-logic. For efficiency, the framework implements
various proof strategies as heuristics that guide the proof search, each strategy optimizing
formal reasoning within a subset of logical theories.

We will present a prototype implementation of a unified proof framework for automating
fixpoint reasoning based on matching µ-logic. We have seen in Chapter 5 that matching
µ-logic has good expressive power and can serve as a foundation for a variety of logical
systems, including LFP, modal logic, modal µ-calculus, temporal logics (LTL, CTL, etc.),
and separation logic. In addition, matching µ-logic patterns admit compact syntax and
convenient notations, which allow us to encode formulas in other logical systems almost
verbatim.

Much of the content in this chapter comes from [120].

6.1 OVERVIEW

Our unifying proof framework consists of three main reasoning modules: fixpoint, frame,
and context (Figure 6.1). The fixpoint reasoning module is the main one; the other two are
to help fixpoint reasoning work properly. Note that these three modules are generic, that is,
they work with all theories. Therefore, they accomplish fixpoint reasoning, frame reasoning,
and context reasoning for all logical systems defined as theories in matching µ-logic.

The main challenge behind developing such a unifying proof framework is that the Hilbert-

133

Figure 6.1: Unifying Proof Framework Based on Matching µ-Logic

style proof system Hµ of matching µ-logic in Figure 4.1 is too fine-grained to be amenable for
automation. For example, consider (Modus Ponens), which says that “⊢ φ→ ψ and ⊢ φ
implies ⊢ ψ”. (Modus Ponens) requires the prover to guess a premise φ, which does not
bode well with automation. When it comes to fixpoint reasoning, the (Knaster Tarski)
proof rule (also called Park induction [121]) for fixpoint reasoning

(Knaster Tarski)
φ[ψ/X]→ ψ

(µX .φ)→ ψ

is limited to handling the cases where the left-hand side of the proof goal is a standalone least
fixpoint. It cannot be directly applied to proof goals in LFP or SL, such as ll(x, y)∗ list(y)→
list(x) (see Section 6.2.2), where the left-hand side C[ll(x, y)] contains the fixpoint ll(x, y)

within a context C[□] ≡ □ ∗ list(y). An indirect application is possible in theory, but it
involves sophisticated, ad-hoc reasoning to eliminate the context C from the left-hand side,
which cannot be efficiently automated.

Our fixpoint module addresses the above challenge by proposing a context-driven fixpoint
proof rule, (kt), shown in Figure 6.2. (kt) is a sequential composition of several proof rules
that first (wrap) context C within the right-hand side ψ, written C ⊸ ψ, and eliminate it
from the left-hand side, then apply inductive reasoning, and finally (unwrap) C and restore
it on the left-hand side. The pattern C ⊸ ψ, called contextual implication, is expressible
in matching µ-logic and intuitively defines all the elements which in context C satisfy ψ.
The fixpoint module therefore makes contexts explicitly occur as conditions in proof goals.
Sometimes the context conditions are needed to discharge a proof goal, other times not. The
frame and context reasoning modules help to eliminate contexts from proof goals. Specifically,
frame reasoning is used when the context is unnecessary: it reduces ⊢ C[φ] → C[ψ] to

134

⊢ φ→ ψ. On the other hand, context reasoning is used when the context is needed in order
to discharge the proof goal, by allowing us to derive ⊢ C[C ⊸ ψ]→ ψ. We shall discuss and
analyze the frame and context reasoning in detail in Section 6.2.

We have not implemented any smart proof strategies or proof search heuristics, but only
a naive bounded depth-first search (DFS) algorithm. Our evaluation on the SL-COMP
benchmark shows that the naive bounded-DFS strategy can prove 90% of the properties
without frame reasoning, and 95% with frame reasoning (Section 6.5). This was surprising,
because it would place our generic proof framework in the third place in the SL-COMP
competition, among dozens of specialized provers developed specifically for SL and heap
reasoning. However, the remaining 5% properties appear to require complex, SL-specific
reasoning, which is clearly beyond the ability of our generic framework. We have also
considered only a small number of LFP and LTL proofs, which could all be done using
the same simplistic bounded-DFS strategy; more powerful proof strategies will certainly be
needed for more complex proofs and will be developed as part of future work.

To evaluate our unified proof framework and prototype implementation, we consider
four representative logical systems for fixpoint reasoning: FOL with least fixpoints (LFP),
separation logic (SL), linear temporal logic (LTL), and reachability logic (RL), all of which have
been introduced in Chapters 2 and 5. We pick these four logics for their representativeness.
LFP is the canonical logic for fixpoint reasoning in the first-order domain. SL is the
representative logic for reasoning about data-manipulating programs with pointers. LTL is
the temporal logic of choice for model checkers of infinite-trace systems, e.g., SPIN [119].
RL is a language-parametric generalization of Hoare logic where the programming language
semantics is given as an input theory and partial correctness is specified and proved as a
reachability rule φpre ⇒ ψpost. These four logics therefore represent relevant instances of
fixpoint reasoning across different and important domains. We believe that they form a
good benchmark for evaluating a unified proof framework for fixpoint reasoning, so we set
ourselves the long-term goal to support all of them. We will give special emphases to SL in
this this, however, because it gathered much attention in recent years that resulted in several
automated SL provers and its own international competition SL-COMP [122].

It would be unreasonable to hope at such an incipient stage that a generic automated
prover can be superior to the state-of-the-art domain-specific provers and algorithmic decision
procedures for all four logics, on all existing challenging benchmarks in their respective
domains. Therefore, for each of the domains, we set ourselves a limited objective. For SL, the
goal was to prove all the 280 benchmark properties collected by SL-COMP in the problem set
qf_shid_entl dedicated to inductive reasoning. For LTL, the goal was to prove the axioms
about the modal operators “always” □φ and “until” φ1 U φ2 in its complete proof system.

135

For LFP and RL, our goal was to verify a simple imperative program sum that computes the
total of 1 to input n using both the LFP and RL encodings, and show that it returns the
correct sum n(n+ 1)/2 on termination. We report what we have done in pushing towards
the above goals, and discuss the difficulties that we met, and the lessons we learned.

6.2 AUTOMATED PROOF FRAMEWORK FOR MATCHING µ-LOGIC

We will propose a new set of higher-level proof rules (as shown in Figure 6.2) that aim
at proof automation. The generic matching µ-logic prover simply runs a simple bounded
DFS algorithm over the higher-level proof rules. We first give an overview of the three key
reasoning modules offered by the automated proof rules in Section 6.2.1 and then explain all
proof rules in detail in Section 6.2.4.

6.2.1 Fixpoint reasoning module

As discussed above, the existing (Knaster Tarski) rule has several limitations due to its
general nature, making it impractical for automation. Therefore, we consider two specialized
proof rules, (lfp) and (gfp), explained below. Let P be a recursive symbol defined by

P (x̃) =lfp ∃x̃1 . φ1(x̃, x̃1) ∨ · · · ∨ ∃x̃m . φm(x̃, x̃m) (6.1)

where x̃, x̃1, . . . , x̃m are variable vectors. To prove ⊢ P (x̃) → ψ for some property ψ, the
proof rule (lfp) firstly unfolds P (x̃) according to its definition, and secondly replaces each
recursive occurrence P (ỹ) (whose arguments ỹ might be different from the original arguments
x̃) in φi by ψ[ỹ/x̃], i.e., the result of substituting in ψ the new arguments ỹ for the original
arguments x̃. Let us denote the result of substituting each φi as φi[ψ/P]. In summary, (lfp)
is the following rule (also shown in Figure 6.2):

∃x̃1 . φ1[ψ/P]→ ψ · · · ∃x̃m . φm[ψ/P]→ ψ
(lfp)

P (x̃)→ ψ (6.2)

Note that (lfp) generates m new sub-goals (above the bar), each corresponding to one case
in the definition of P . All sub-goals have the same, original property ψ on the right-hand
side. Intuitively, (lfp) is a logical incarnation of the induction principle that consists of case
analysis (according to the definition of p) and inductive hypotheses (i.e., replacing p by the
intended property ψ on the left-hand side).

136

6.2.2 Context reasoning module and contextual implication

Although (lfp) is more syntax-driven than the original (Knaster Tarski) rule, it still
has limitations. We illustrate them using a simple example in SL

⊢ ll(x, y) ∗ list(y)→ list(x) (6.3)

where ll and list are defined as recursive predicates:

ll(x, y) =lfp emp ∧ x = y ∨ ∃z . x 7→ z ∗ ll(z, y) (6.4)

list(x) =lfp emp ∧ x = 0 ∨ ∃z . x 7→ z ∗ list(z) (6.5)

Intuitively, ll(x, y) states that there is a singly-linked list from x to y and list(x) equals
to ll(x, 0). Clearly, (lfp) cannot be applied directly to (6.3), because the left-hand side is
not a recursive symbol, but a larger pattern ll(x, y) ∗ list(y) in which the recursive pattern
ll(x, y) occurs. In other words, ll(x, y) occurs within a context in the left-hand side. Let
C[□] ≡ □ ∗ list(y) be the context pattern where □ is a distinguished hole variable. We
rewrite proof goal (6.3) to the following form using context C:

⊢ C[ll(x, y)]→ list(x) (6.6)

Introducing contexts allows us to examine the limitations of rule (lfp) from a more structural
point of view. Clearly, (lfp) can only be applied when C is the identity context, i.e.,
Cid [□] ≡ □, but as we have seen above, in practice recursive patterns often occur within a
non-identity context, so a major challenge in applying (lfp) in automated fixpoint reasoning
is to handle such non-identity contexts in a systematic way.

To solve the above challenge, we propose an important concept called contextual implication.
Recall that a context C is a pattern with a distinguished variable denoted h, called the hole
variable. Note that we do not use the standard notation □ to denote the hole variable, to
not confuse it with the “always” operator □φ in LTL. We write C[φ] as the substitution
C[φ/h]. We say that C is a structure context if C ≡ t ∧ ψ where t is an application context
(Definition 3.1) and ψ is a predicate (i.e., patterns equivalent to ⊤ or ⊥). For example,
h ∗ list(y) ∧ y > 1 is a structure context (w.r.t. h) because separating conjunction ∗ is
a symbol in matching µ-logic (see Section 5.3). All contexts discussed here are structure
contexts.

A structure context C is extensive in the hole position, in the following sense. An element
a matches C[φ] where C is a structure pattern and φ is any pattern plugged into the hole,

137

if and only if there exists an element a0 that matches φ such that a equals C[a0]. In other
words, matching the entire structure C[φ] can be reduced to matching the local structure
φ and the local reasoning we make about φ at the hole position can be lifted to the entire
structure C[φ]. Therefore, structure contexts allows us to do contextual reasoning.

Let C[□] be a structure context and ψ be a pattern. We define contextual implication
w.r.t. C and ψ as the pattern whose matching elements satisfy ψ if plugged into C.

Definition 6.1. We define contextual implication C ⊸ ψ ≡ ∃h . h ∧ (C[h] ⊆ ψ).

Recall that in matching µ-logic, ∃ means set union. Thus, C ⊸ ψ is the pattern matched by
all h such that C[h] ⊆ ψ holds, i.e., when plugged in C, the result C[h] satisfies property ψ.
The following is a useful result about contextual implications for structure contexts C:

⊢ C[φ]→ ψ
(Wrap) context C−−−−−−−−−−−−⇀↽−−−−−−−−−−−−

(Unwrap) context C
⊢ φ→ (C ⊸ ψ) (6.7)

Note that C ⊸ ψ is a pattern defined using the syntax of matching µ-logic. It is not an
extension of matching µ-logic, but simply a convenient use of the existing expressiveness
of patterns to simplify (and automate) formal reasoning by “pulling the target out of its
context”.

Now, we revisit the SL example and look at proof goal (6.6). By wrapping the structure
context C[□] = h ∗ list(y), we transform it to the following equivalent goal, to which (lfp)
can be applied:

⊢ ll(x, y)→ (C ⊸ list(x)) where C[□] = h ∗ list(y) (6.8)

This way, contextual implication helps address the limitations of (lfp) by offering a systematic
and general method to wrap/unwrap any contexts, making proof automation based on (lfp)
possible.

We conclude the discussion on contextual implication with two remarks. Firstly, after
context C is wrapped, the right-hand side becomes C ⊸ ψ, which by (lfp) will be moved
back to left-hand side and replace the recursive occurrences of the recursive pattern (see
Equation (6.2), where ψ becomes C ⊸ ψ). Therefore, we need a set of proof rules to handle
and match those contextual implications that occur on the left-hand side using pattern
matching. This is explained in detail in Section 6.2.4.

The second remark is that our contextual implication generalizes separating implication
φ−∗ ψ (the “magic wand”) in SL. Indeed, let context Cφ[□] = □ ∗ φ, then we have φ−∗ ψ =

Cφ ⊸ ψ. In other words, SL magic wand is a special instance of contextual implication,

138

where the underlying theory is ΓSL and context C[□] has the specific form □ ∗ φ where h
occurs immediately below the top-level ∗ operator, and the SL proof rule (ADJ) [26, pp. 5],
⊢ φ1 ∗ φ → ψ iff ⊢ φ1 → (φ −∗ ψ), is also a special instance of (wrap) and (unwrap).
However, contextual implications are more general, because they can be applied to any
ML theories and any complex contexts C[□], e.g., to entire program configurations (see
Section 2.14) not only heaps.

6.2.3 Frame reasoning module

Another advantage of having an explicit notion of context as shown above, is that frame
reasoning can be generalized to all structure contexts C. In the following, we compare the
frame reasoning in separation logic for heap contexts (left, also called (monotone) in [26])
and the general frame reasoning in matching µ-logic for any contexts C (right):

φ→ ψ
(Frame) rule in SL

φ ∗ φrest → ψ ∗ φrest

φ→ ψ
Our (Frame) rule

C[φ]→ C[ψ] (6.9)

Clearly, the SL (Frame) rule a special instance of our (Frame) rule, where C[□] ≡ □ ∗φrest.
Our (Frame) rule is more general and can be applied to any theories and complex contexts.

We conclude the discussion on frame reasoning with a remark about framing for Hoare-style
program correctness using SL as an assertion logic, which has the following form:

φ {code} ψ
(Frame on Programs)

φ ∗ φrest {code} ψ ∗ φrest if code does not modify Vrest

(6.10)
where Vrest = freeVar(φrest). If we instantiate code by the idle program skip, then (Frame)
in SL becomes an instance of (Frame on programs). While (Frame on programs) is
certainly convenient in practice, we would like to point out that it is language-specific and
generally unsound. Indeed, the rule and its side condition itself suggest that the language
has a heap and code can modify pointers, which may not be the case for some functional,
logic, or domain specific languages. Also, if the language has a construct get_memory() that
returns the total memory size, which we can find in most real languages, and code requires
exactly say 8GB of memory space as specified by ψ, then φ ∗ φrest {code} ψ ∗ φrest does
not hold for any nonempty φrest, so the rule is unsound. In other words, the (Frame on

programs) proof rule is a privilege of certain toy programming languages, or abstractions
of real languages, whose soundness must be established for each language on a case by case
basis. In contrast, (Frame) in matching µ-logic is universally sound for all logical theories

139

and thus programming languages whose semantics are defined as matching µ-logic theories.
If one’s particular language allows a proof rule like (Frame on programs), then one can
prove it as a separate lemma and then use it in proofs.

6.2.4 Framework description

We present and discuss the automated proof rules in the framework, as shown in Figure 6.2.
The framework is parametric in a theory Γ, and it proves implications, i.e., Γ ⊢ φ→ ψ. A
proof rule consists of several premises written above the bar and a conclusion written below
the bar. Our prover takes the proposed proof rules and axioms in theory Γ and reduces
the (given) proof goal by applying the rules backward, from conclusion to premises. New
sub-goals will be generated during the proof. When all sub-goals are discharged, the prover
stops with success. Therefore, our prover is essentially a simple search algorithm over the set
of proof rules.

Before explaining the proof rules, we define some terminology. A structure pattern is a
pattern built only from variables and symbols. A conjunctive (resp. disjunctive) pattern
is a pattern of the form φ1 ∧ · · · ∧ φn (resp. φ1 ∨ · · · ∨ φn), where φ1, . . . , φn are structure
patterns. In Figure 6.2, we assume p is a recursive symbol defined by p(x̃) =lfp

∨
i φi where

each φi denotes one definition case.
(elim-∃) is a standard FOL rule that simplifies the left-hand side by removing existential

variables. Note that the side condition x ̸∈ freeVar(ψ) is necessary for the soundness
of the rule, but it can be easily satisfied by renaming the bound variables to some fresh
ones. Therefore, by applying (elim-∃) exhaustively, we can obtain a left-hand side that is
quantifier-free at the top.

(smt) does domain reasoning using SMT solvers such as Z3 [123] and CVC4 [124], where
recursive symbols are treated as uninterpreted functions. Note that (smt) is the only proof
rule that finishes the proof, so it is always tried first. In practice, goals that can be proved
by (smt) are those about the common mathematical domains such as natural and integer
numbers, using the underlying theory Γ. We write ⊨SMT φ→ ψ to mean that φ→ ψ is proved
by SMT solvers.

(pm) uses the pattern matching algorithm, pm, to instantiate the quantified variable(s) ỹ
on the right-hand side. The algorithm pm will be discussed in Section 6.4.3. The algorithm
returns a match result as a substitution θ, which tells us how to instantiate the variables ỹ. If
match succeeds, the instantiated proof goal φ→ ψθ should be immediately proved by (smt).

Note that the soundness of our proof framework does not rely on the correctness of the
matching algorithm, because (pm) is basically a standard FOL proof rule and holds for any

140

(elim-∃)
φ→ ψ

if x /∈ freeVar(ψ)
(∃x . φ)→ ψ

(smt) φ→ ψ if ⊨SMT φ→ ψ

(match-ctx)
Crest [φ

′θ]→ ψ
where (Crest , θ) = cm(Co , C

′, ỹ)
Co [∀ỹ . (C ′ ⊸ φ′)]→ ψ

(pm)
φ→ ψθ

where θ ∈ pm(φ, ψ, ỹ) matches φ with ψ
φ→ ∃ỹ . ψ

(frame)
φ→ ψ

C[φ]→ C[ψ]

(unfold-r)
φ→ C[φi] where p(x̃) =lfp

∨
i φiφ→ C[p(x̃)]

(kt) (the sequential compositions of the next 5 rules)

(wrap)
p(x̃)→ (C ⊸ ψ)

C[p(x̃)]→ ψ

(intro-∀)
p(x̃)→ ∀ỹ . (C ⊸ ψ)

where ỹ = freeVar(ψ) \ x̃
p(x̃)→ (C ⊸ ψ)

(lfp)
· · · φi[∀ỹ . (C ⊸ ψ)/p]→ ∀ỹ . (C ⊸ ψ)

p(x̃)→ ∀ỹ . (C ⊸ ψ)

(elim-∀)
φ→ (C ⊸ ψ)

if y /∈ freeVar(φ)
φ→ ∀y . (C ⊸ ψ)

(unwrap)
C[φ]→ ψ

φ→ (C ⊸ ψ)

Procedures pm and cm are defined in Sections 6.4.2 and 6.4.3.

Figure 6.2: Automatic Proof Rules for Fixpoint Reasoning

141

substitution θ. The matching algorithm is a heuristic to find a good θ. We rely on the
external SMT solver to check the correctness of the match result given by the matching
algorithm, through rule (smt).

The combination of (pm) (based on the pattern matching algorithm pm) and (smt)
(based on SMT solvers) gives us the ability to do static reasoning about structure patterns.
In separation logic (SL), for example, structural patterns correspond to spatial formulas
built from the heap constructors emp, 7→ , and ∗, whose behaviors are axiomatized as
the algebraic specification given in Section 2.6 where ∗ is associative and commutative
and emp is its unit. If the matching algorithm pm does not support matching modulo
associativity (A), commutativity (C), and unit elements (U), then it cannot effectively
discharge (separation logic) goals that are provable. In general, matching modulo any
(given) set of equations is undecidable [125], so in this work, we implement a naive matching
algorithm that supports matching modulo associativity (A-matching), and matching modulo
associativity and commutativity (AC-matching), which turned out to be effective so far.

(unfold-r) unfolds one recursive pattern p(x̃) on the right-hand side within any context C
(satisfying mild conditions for contextual implication in Section 6.2.2) following its definition
p(x̃) =lfp

∨
i φi. The technical conditions guarantee that disjunction distributes over the

context, so C[
∨
i φi] =

∨
iC[φi]. Therefore, after applying (unfold-r) we need to prove one

of the new goals φ→ C[φi].
(kt), named after the Knaster-Tarski fixpoint theorem [21], is a sequential composition of

five proof rules shown in Figure 6.2: (wrap), (intro-∀), (lfp), (elim-∀), and (unwrap).
We explained the core proof rule (lfp) in Section 6.2.1. We explained in Section 6.2.2 why
we need (wrap) and (unwrap) and showed how they help address the limitations of (lfp),
so here we only present their formal forms. (intro-∀) and (elim-∀) are standard FOL rules.
(intro-∀) strengthens the right-hand side and thus makes the subsequent proofs easier,
because the (strengthened) right-hand side will be moved to the left-hand side by (lfp).
Then after (lfp), we apply (elim-∀) to restore the right-hand side to the form right after
(wrap) is applied (note the premise of (wrap) is the same as the premise of (elim-∀)).

There is a challenge raised by applying (lfp) on goals whose right-hand side are contextual
implications, because those contextual implications are moved to the left-hand side by (lfp)
and then block the proofs, because (so far) we have not defined any proof rules that can
handle contextual implications on the left-hand side. This will be solved by (match-ctx)

which is explained below.
(match-ctx) deals with the (quantified) contextual implication ∀ỹ . (C ′ ⊸ ψ′) on the

left-hand side introduced by (lfp) and is one of the most complicated proof rule in our
proof system. Note that (lfp) does the substitution [∀ỹ . (C ⊸ ψ)/p], which means (see

142

Section 6.2.1) to replace each recursive occurrence p(x̃′) (where x̃′ might be different from the
original argument x̃) by (∀ỹ . (C ⊸ ψ))[x̃′/x̃], whose result we denote as ∀ỹ . (C ′ ⊸ ψ′). The
number of contextual implications on the left-hand side is the same as the number of recursive
occurrences of p in its definition. (match-ctx) eliminates one contextual implication at a
time, through a context matching algorithm cm, which will be discussed in Section 6.4.2.
Here, we give the key intuition behind it.

When can a contextual implication C ′ ⊸ ψ′ be eliminated? Recall Definition 6.1, which
defines C ′ ⊸ ψ′ to be the set of elements h such that C ′[h] satisfies ψ′. Therefore, we have
the following key property about contextual implications:

⊢ C ′[C ′ ⊸ ψ′]→ ψ′ (6.11)

This property is not unexpected. Indeed, C ′ ⊸ ψ′ is matched by any elements that imply ψ′

when plugged in context C ′. The above is a direct formalization of that intuition.
In principle, (6.11) can be used to handle contextual implication on the left-hand side.

If contextual implication C ′ ⊸ ψ happens to occur within the same context C ′, then we
can replace C ′[C ′ ⊸ ψ] by ψ′, using (6.11) and standard propositional reasoning. However,
situations in practice are more complex. Firstly, contextual implication can be quantified,
i.e., ∀ỹ . (C ′ ⊸ ψ′), so we need to first instantiate it using a substitution θ, to C ′θ ⊸ ψ′θ.
Secondly, the out-most context Co might contain more than needed to match with C ′θ. So
after matching, the rest, unmatched context, denoted Crest , stays in the proof goal. The
context matching algorithm cm (Section 6.4.2) implements heuristics to find a suitable
substitution θ such that C ′θ matches with (a part of) the out-most context Co, and when
succeeding, it returns θ and the remaining unmatched context Crest .

(frame) is to support frame reasoning. In contrast to (match-ctx), which uses the outer
context to simply the contextual implication, i.e. it says the context does matter, (frame)
is to remove the outer context, which does not matter.

We conclude by the soundness of the proof rules in Figure 6.2.

Theorem 6.1. If φ is provable from Γ using the proof rules in Figure 6.2 then φ is provable
from Γ using the proof system Hµ in Figure 4.1 plus the proof rule (smt).

Proof. (elim-∃), (pm), (intro-∀), (elim-∀) can be proved by standard FOL reasoning,
which are supported by the proof system Hµ. Rules (lfp) and (unfold-r) can be proved by
standard fixpoint reasoning, also supported by Hµ. Rules (frame), (match-ctx), (wrap),
and (unwrap) rely on the properties of structure contexts. QED.

Combining Theorem 6.1 with Theorem 4.1, we conclude that our proof framework is sound,

143

assuming that the SMT solvers used in the proof rule (smt) are sound.

Theorem 6.2. If φ is provable from Γ using the proof rules in Figure 6.2, then Γ ⊨ φ,
assuming the soundness of the SMT solvers used in the proof rule (smt).

6.3 EXAMPLES

We have so far explained our proof rules. Next, we show how these rules are put into
practice by using them to prove several example proof goals collected from the various logical
systems. Our objective is to help the reader understand better our proof framework and
some subtle technical details, to show that the proof rules in Figure 6.2 are designed carefully
to capture the essence of fixpoint reasoning, and to show that our proof method is general
and can be used to reason about fixpoints that occur in various mathematical domains.

6.3.1 A basic SL example

We first prove ⊢ ll(x, y)→ lr(x, y) where

ll(x, y) =lfp (x = y ∧ emp) ∨ (x ̸= y ∧ ∃t . x 7→ t ∗ ll(t, y)) (6.12)

lr(x, y) =lfp (x = y ∧ emp) ∨ (x ̸= y ∧ ∃t . lr(x, t) ∗ t 7→ y) (6.13)

The proof tree is shown in Figure 6.3. Since the left-hand side ll(x, y) is already a recursive
pattern, the (wrap) rule does not make any change. Therefore, we apply directly the (lfp)

rule and get two new proof goals. One goal, shown below, corresponds to the base case of
the definition of ll(x, y):

⊢ (x = y ∧ emp)→ lr(x, y) (6.14)

The other goal corresponds to the inductive case and is shown in the second last line in
Figure 6.3. For clarity, we breakdown the steps in calculating the substitution [lr(x, y)/ll]

required by (lfp) below:

⊢ ll(x, y)→ lr(x, y) proof goal, before (lfp) (6.15)

⊢ (∃z . x 7→ z ∗ ll(z, y) ∧ x ̸= y)→ lr(x, y) phantom step 1: unfolding (6.16)

⊢ (∃z . x 7→ z ∗ lr(z, y) ∧ x ̸= y)→ lr(x, y) phantom step 2: substituting lr for ll (6.17)

Now, the base case goal can be proved by applying (unfold-r) to unfold the right-hand side
lr(x, y) to its base case and then calling SMT solvers. The inductive case (after eliminating

144

Truesmt
lr(x,w) ∗ w 7→ y ∧ z ̸= y ∧ x ̸= y → x ̸= y ∧ lr(x,w) ∗ w 7→ y

pm
lr(x,w) ∗ w 7→ y ∧ z ̸= y ∧ x ̸= y → x ̸= y ∧ ∃t . lr(x, t) ∗ t 7→ y

unfold-r
lr(x,w) ∗ w 7→ y ∧ z ̸= y ∧ x ̸= y → lr(x, y)

match-ctx
x 7→ z ∗ (∀x . (C ′ ⊸ lr(x,w))) ∗ w 7→ y ∧ z ̸= y ∧ x ̸= y → lr(x, y) (†)

elim-∃ ∃w . x 7→ z ∗ (∀x . (C ′ ⊸ lr(x,w))) ∗ w 7→ y ∧ z ̸= y ∧ x ̸= y → lr(x, y)
unwrap

∃w . (∀x . (C ′ ⊸ lr(x,w))) ∗ w 7→ y ∧ z ̸= y → (C ⊸ lr(x, y))
elim-∀ ∃w . (∀x . (C ′ ⊸ lr(x,w))) ∗ w 7→ y ∧ z ̸= y → ∀x . (C ⊸ lr(x, y)) · · ·

lfp
lr(z, y)→ ∀x . (C ⊸ lr(x, y))

intro-∀
lr(z, y)→ (C ⊸ lr(x, y))

wrap
x 7→ z ∗ lr(z, y) ∧ x ̸= y → lr(x, y)

elim-∃ ∃z . x 7→ z ∗ lr(z, y) ∧ x ̸= y → lr(x, y) · · ·
lfp

ll(x, y)→ lr(x, y)

where C[□] ≡ x 7→ z ∗□ ∧ x ̸= y
C ′[□] ≡ x 7→ z ∗ h ∧ x ̸= w

Figure 6.3: Proof Tree of ⊢ ll(x, y)→ lr(x, y)

∃z from left-hand side), ⊢ x 7→ z ∗ lr(z, y) ∧ x ≠ y → lr(x, y), contains a recursive pattern
lr(z, y) within a context C[h] = x 7→ z ∗ h ∧ x ≠ y. Therefore, we (wrap) the context and
yield contextual implication C ⊸ lr(x, y) on the right-hand side, and quantify it with ∀x by
(intro-∀). Then (lfp) is applied, yielding two sub-goals, one for the base case and one for
the inductive case. We omit the base case and show the following breakdown steps for the
inductive case, for clarity:

⊢ lr(z, y)→ (C ⊸ lr(x, y)) proof goal, before (lfp)
(6.18)

⊢ (∃w . lr(z, w) ∗ w 7→ y ∧ z ̸= y)→ (C ⊸ lr(x, y)) unfolding
(6.19)

⊢ (∃w . (∀x . (C ⊸ lr(x, y)))[w/y]∗w 7→y∧z ̸= y)→(C ⊸ lr(x, y)) substituting
(6.20)

where (∀x . (C ⊸ lr(x, y)))[w/y] = ∀x . (C ′ ⊸ lr(x,w)) and C ′[h] = x 7→ z ∗ h ∧ x ̸= w.
Now the proof proceeds by (unwrap)-ping the context C on the right-hand side and

moving it back to the left-hand side, and eliminating the quantifier ∃w by (elim-∃). Then
the proof goal becomes the following (i.e., (†) in line 5, Figure 6.3):

x 7→ z ∗ (∀x . (C ′ ⊸ lr(x,w))) ∗ w 7→ y ∧ z ̸= y ∧ x ̸= y → lr(x, y) (6.21)

145

Truesmt
lr(x,w, s3) ∗ ϕ→ lr(x,w, s3) ∗ w 7→ y ∧ s=s3∪{w} ∧ x ̸= y

pm
lr(x,w, s3) ∗ ϕ→ ∃t∃s4 . lr(x, t, s4) ∗ t 7→ y ∧ s=s4∪{t} ∧ x ̸= y

unfold-r
lr(x,w, s3) ∗ ϕ→ lr(x, y, s)

match-ctx
x 7→ z ∗ (∀x∀s . (C ′ ⊸ lr(x,w, s))) ∗ ϕ→ lr(x, y, s) (‡)

elim-∃
x 7→ z ∗ (∃w∃s2 . (∀x∀s . (C ′ ⊸ lr(x,w, s))) ∗ ϕ) ∧ s=s1∪{x} ∧ x ̸= y → lr(x, y, s)

unwrap
∃w∃s2 . (∀x∀s . (C ′ ⊸ lr(x,w, s))) ∗ w 7→ y ∧ s1=s2∪{w} ∧ z ̸= y → (C ⊸ lr(x, y, s))

elim-∀ ∃w∃s2 . (∀x∀s . (C ′ ⊸ lr(x,w, s))) ∗ w 7→ y ∧ s1=s2∪{w} ∧ z ̸= y → ∀x∀s . (C ⊸ lr(x, y, s)) · · ·
lfp

lr(z, y, s1)→ ∀x∀s . (C ⊸ lr(x, y, s))
intro-∀

lr(z, y, s1)→ (C ⊸ lr(x, y, s))
wrap

x 7→ z ∗ lr(z, y, s1) ∧ s=s1∪{x} ∧ x ̸= y → lr(x, y, s)
elim-∃ ∃z∃s1 . x 7→ z ∗ lr(z, y, s1) ∧ s=s1∪{x} ∧ x ̸= y → lr(x, y, s) · · ·

lfp
ll(x, y, s)→ lr(x, y, s)

where C[□] ≡ x 7→ z ∗□ ∧ s = s1 ∪ {x} ∧ x ̸= y
C ′[□] ≡ C[□][w/y, s2/s1] = x 7→ z ∗□ ∧ s = s2 ∪ {x} ∧ x ̸= w
ϕ ≡ w 7→ y ∧ s1 = s2 ∪ {w} ∧ z ̸= y ∧ s = s1 ∪ {x} ∧ x ̸= y

Figure 6.4: Proof Tree of ⊢ ll(x, y, s)→ lr(x, y, s)

At this point, the quantified contextual implication on the left-hand side is instantiated and
matched by (match-ctx), which calls the context matching algorithm cm, introduced in
Section 6.4. Intuitively, the algorithm uses heuristics to produce an instantiation for ∀x (in
this case, it happens that the algorithm instantiates ∀x to x) and then checks if the out-most
context Co of (†) implies the (instantiated) context C ′, where Co[h] ≡ x 7→ z ∗ h ∗ w 7→
y ∧ z ̸= y ∧ x ̸= y.

Note that context C ′ consists of a structure pattern x 7→ z and a logical constraint x ̸= w.
The structure pattern is already matched in Co. The logical constraint can be implied
from Co, which has two structure patterns x 7→ z and w 7→ y, and using the basic SL
axiom/property x1 7→ y ∗x2 7→ z → x1 ̸= x2. Therefore, (match-ctx) is applied successfully,
and the rest, unmatched context of Co is left in the goal (line 4 of Figure 6.3) and proved in
the subsequent proofs.

6.3.2 A more complex SL example

The previous simple example does not illustrate the usage of (intro-∀), because (match-

ctx) applied to goal (†) in Figure 6.3 decides to instantiate ∀x by x, which means that the
proof could also work without (intro-∀). In this section, we show a slightly more complex
example that shows the necessity of (intro-∀).

Consider the following slightly modified definitions of ll and lr that take a third argument

146

Truesmt
x 7→ t1 ∗ t1 7→ t2 ∗ llE (t2, z)→ x 7→ t1 ∗ t1 7→ t2 ∗ llE (t2, z)pm

x 7→ t1 ∗ t1 7→ t2 ∗ llE (t2, z)→ ∃u1∃u2 . x 7→ u1 ∗ u1 7→ u2 ∗ llE (u2, z)unfold-r
x 7→ t1 ∗ t1 7→ t2 ∗ llE (t2, z)→ llE (x, z)

match-ctx
x 7→ t1 ∗ t1 7→ t2 ∗ (∀z . (C ⊸ llE (t2, z))) ∗ llO(y, z)→ llE (x, z)

elim-∃ ∃t1∃t2 . x 7→ t1 ∗ t1 7→ t2 ∗ (∀z . (C ⊸ llE (t2, z))) ∗ llO(y, z)→ llE (x, z)
unwrap

∃t1∃t2 . x 7→ t1 ∗ t1 7→ t2 ∗ ∀z . (C ⊸ llE (t2, z))→ (C ⊸ llE (x, z))
elim-∀ ∃t1∃t2 . x 7→ t1 ∗ t1 7→ t2 ∗ ∀z . (C ⊸ llE (t2, z))→ (C ⊸ llE (x, z)) · · ·

lfp
llO(x, y)→ ∀z . (C ⊸ llE (x, z))

intro-∀
llO(x, y)→ (C ⊸ llE (x, z))

wrap
llO(x, y) ∗ llO(y, z)→ llE (x, z)

where C[□] ≡ □ ∗ llO(y, z)

Figure 6.5: Proof Tree of ⊢ llO(x, y) ∗ llO(y, z)→ llE (x, z)

s denoting the set of elements in the list segment:

ll(x, y, s) =lfp (x = y ∧ emp ∧ s = ∅) ∨ ∃x1∃s1 . x7→x1 ∗ ll(x1, y, s1) ∧ s=s1∪{x} ∧ x ̸=y
(6.22)

lr(x, y, s) =lfp (x = y ∧ emp ∧ s = ∅) ∨ ∃y1∃s1 . lr(x, y1, s1) ∗ y1 7→y ∧ s=s1∪{y1} ∧ x ̸=y
(6.23)

Its proof tree in Figure 6.4 is similar to the one in Figure 6.3, except that the use of
rule (intro-∀) is necessary for the proof to succeed, because we need to instantiate the
quantifier ∀s of goal (‡) in Figure 6.4, line 5, with a fresh variable s3 in the application of
rule (match-ctx). Suppose there is no application of rule (intro-∀). Then, we will have

x 7→ z ∗ (C ′ ⊸ lr(x,w, s))∗w 7→ y∧s1 = s2∪{w}∧z ̸= y∧s = s1∪{x}∧x ̸= y → lr(x, y, s)

(6.24)
where C ′[□] = x 7→ z∗□∧s = s2∪{x}∧x ̸= w. So we cannot match s=s1∪{x}∧s1=s2∪{w}
in the outer context with s=s2∪{x} in the inner context. In other words, we cannot eliminate
the inner context and the proof will get stuck.

147

6.3.3 A SL example featuring mutual recursion

Mutually recursive definitions are in general defined as:
p1(ỹ1) =lfp ∃x̃11 . φ11(ỹ1, x̃11) ∨ · · · ∨ ∃x̃1m1 . φ1m1(ỹ1, x̃1m1)

· · ·

pk(ỹk) =lfp ∃x̃k1 . φk1(ỹk, x̃k1) ∨ · · · ∨ ∃x̃kmk . φkmk(ỹk, x̃kmk)

(6.25)

which simultaneously define k recursive definitions p1, . . . , pk to be the least among those
satisfy the equations. Our way of dealing with mutual recursion is to reduce it to sev-
eral non-mutual, simple recursions. We use the following separation logic challenge test
qf_shid_entl/10.tst.smt2 from the SL-COMP’19 competition [122] as an example. Con-
sider the following definition of list segments of odd and even length:llO(x, y) =lfp x 7→ y ∨ ∃t . x 7→ t ∗ llE (t, y)

llE (x, y) =lfp ∃t . x 7→ t ∗ llO(t, y)
(6.26)

and the proof goal ⊢ llO(x, y) ∗ llO(y, z)→ llE (x, z).
To proceed the proof, we first reduce the mutual recursion definition into the following two

non-mutual, simple recursion definitions, which can be obtained systematically by unfolding
the other recursive symbols to exhaustion.

llO(x, y) =lfp x 7→ y ∨ ∃t1∃t2 . x 7→ t1 ∗ t1 7→ t2 ∗ llO(t2, y) (6.27)

llE (x, y) =lfp ∃t1∃t2 . x 7→ t1 ∗ t1 7→ t2 ∗ llE (t2, y) (6.28)

Then, the proof can be carried out in the normal way. We show the proof tree in Figure 6.5.

6.3.4 An LTL example

We demonstrate the generality of our proof method by showing how to prove the induction
proof rule of the sound and complete proof system of LTL (Figure 2.5. Recall that LTL can
be defined as a matching µ-logic theory (Section 5.9.1).

Consider the following LTL rule for induction: ⊢ p ∧□(p→ ◦p)→ □p. Since the “always
□” operator is defined as a greatest fixpoint □φ =gfp φ ∧ ◦□φ, we need a set of proof rules

148

Truesmt
p ∧ (p→ ◦p) ∧ ◦□(p→ ◦p)→ ◦p ∧ ◦□(p→ ◦p)

unfold-L
p ∧□(p→ ◦p)→ ◦p ∧ ◦□(p→ ◦p)

◦∧
p ∧□(p→ ◦p)→ ◦(p ∧□(p→ ◦p))

pm
p ∧□(p→ ◦p)→ p ∧ ◦(p ∧□(p→ ◦p))

gfp
p ∧□(p→ ◦p)→ □p

Figure 6.6: Proof Tree of ⊢ p ∧□(p→ ◦p)→ □p

dual to those in Figure 6.2, where the key rule, (gfp) (dual to (lfp)), is shown below:

(gfp)
φ→ ψi[φ/q]

φ→ q(ỹ)
q(ỹ) =gfp

∨
ψi (6.29)

(GFP) is used to discharge the right-hand side □p of the proof goal. We show the self-
explanatory proof tree in Figure 6.6. Note that during the proof we use the distributivity
law provided by the theory ΓLTL in Section 5.9.1, denoted as proof step (◦∧) in Figure 6.6.

6.3.5 A verification example from RL

We have discussed RL and showed its matching µ-logic theory in Section 5.11. Here, we
use one example to illustrate how reachability reasoning, i.e. formal verification, can be
handled uniformly by our proof framework. Before we dive into the technical details, let
us remind readers that in RL, structure patterns are used to represent the program states,
called configurations in RL, of the programming language (Section 2.14). The reachability
property φ1 ⇒ φ2 then builds on top of the structure patterns and defines the transition
relation among program configurations.

We use the following simple program sum to explain the core RL concepts.

sum ≡ while (--n) {s=s+n;}

The program sum is written in a simple imperative language that has a C-like syntax. It
calculates the total from 1 to n and adds it to the variable s. Its functional correctness means
that when it terminates, the value of variable s should be s+ n(n− 1)/2, where s and n are
the initial values we give to the variables s and n, respectively.

In order to execute sum, we need to know the concrete values of s and n. This semantic
information is organized as a mapping from variables to their values and we call the mapping
a state. Knowing the program and the state where it is executed allows us to execute
the program to termination. Thus, a program and a state forms a complete computation

149

configuration for this simple imperative language and the configurations can be represented
using structure patterns that hold all the semantic information needed for program execution.
For example, let us write down the initial and final configurations of sum where we initialize
s and n by the integer values s and n, respectively:

φpre ≡
〈〈
sum
〉
code

〈
n7→n, s7→s

〉
state

〉
cfg
∧ n ≥ 1 (6.30)

φpost ≡
〈〈
·
〉
code

〈
n7→0, s7→s+ n(n− 1)/2

〉
state

〉
cfg

(6.31)

Following RL convention, we write configurations in cells such as ⟨. . . ⟩code, ⟨. . . ⟩state; from
a logical point of view, these are simply structure patterns and are built from ML symbols
in the same way how FOL terms are defined. The functional correctness of sum states the
following: if we start from the initial configuration φpre and the program terminates, then the
final configuration is φpost, where there is nothing to be executed anymore (as denoted by the
dot “ · ”, meaning “nothing”, in the ⟨. . . ⟩code cell), n is mapped to 0, and s is mapped to the
correct total s+ n(n− 1)/2. This functional (partial) correctness property can be expressed
by the reachability property φpre ⇒ φpost. According to Section 5.11, φpre ⇒ φpost is equal to
φpre → (WF→ ⋄φpost), where WF = µX . ◦X is matched by all well-founded configurations
(i.e., those without infinite execution traces) and ⋄φpost = µX .φpost ∨ •X is matched by all
configurations that eventually reach φpost, after at most finitely many execution steps. This
encoding correctly captures the partial correctness.

We now prove that sum satisfies the correctness property φpre ⇒ φpost. We put the proof
tree in Figure 6.7 and explain it at a higher-level below. Intuitively, the proof works by
symbolically executing the program step by step and applying inductive reasoning to finish
the proof as soon as repetitive configurations (i.e., those generated by the while-loop in sum)
are identified during the proof. Each symbolic execution step corresponds to a reachability
property that can be proved about sum. While we proceed with the proof and carry out
symbolic execution, we collect the proved reachability properties so that they can be used
(by induction) to resolve the proof goal about the while-loop.

The proof goals have the form S ∪ Si ⊢ φi → ψi where S is a set of RL rules that include
all the reachability rules axiomatizing the small-step style operational semantics of the
language and Si include those representing the results of i-step symbolic execution. Initially,
the functional correctness proof goal is S ∪{φpre→φpre} ⊢ φpre→ ⋄w ψ, where ψ is the
final configuration φpost rewritten using the recursive predicate sum(l, u, b, s), meaning the
partial-sum relation: s = b + (u + (u − 1) + · · · + l). Pattern φpre → φpre corresponds to
the symbolic execution reachability rule (i.e., lemma) that we can prove by executing the
initial configuration φpre by 0 step. As the proof proceeds, more symbolic execution steps

150

S ⊢ Truesmt
S ⊢ φ′

3 → φ′
3pm

S ⊢ φ′
3 → φfin

frame
S ⊢ •3φ′

3 → •3φfin
unfold-r

S ⊢ •3φ′
3 → ⋄ψ

fol
S⊢◦4(∀n1∀s1 . (C ⊸ φfin))∧•3φ′

3→φfin

S ⊢ Truesmt
S⊢sum(1, n′

1, s
′
1, s2)→s′1=s1+n

′
1∧n

′
1=n1−1∧sum(1, n′

1, s
′
1, s2)pm

S⊢sum(1, n′
1, s

′
1, s2)→∃x∃y . y=s1+x∧x=n1−1∧sum(1, x, y, s2)

unfold-r
S ⊢ sum(1, n′

1, s
′
1, s2) → sum(1, n1, s1, s2)

pm
S ⊢ ♢ψ′ → φfin

match-ctx
S ⊢ ∀n1∀s1 . (C ⊸ φfin) ∧ φ4 → φfin

frame
S ⊢ •4(∀n1∀s1 . (C ⊸ φfin) ∧ φ4) → •4 ⋄ ψ

unfold-r
S ⊢ •4(∀n1∀s1 . (C ⊸ φfin) ∧ φ4) → φfin

◦•
S ⊢ ◦4(∀n1∀s1 . (C ⊸ φfin)) ∧ •4φ4 → φfin

app-sym
S ∪ {φpre → (•3φ′

3 ∨ •4φ4)} ⊢ ◦4(∀n1∀s1 . (C ⊸ φfin)) ∧ φpre → φfin
unwrap

S ∪ {φpre → (•3φ′
3 ∨ •4φ4)} ⊢ ◦4(∀n1∀s1 . (C ⊸ φfin)) → (C ⊸ φfin)

elim-∀
S ∪ {φpre → (•3φ′

3 ∨ •4φ4)} ⊢ ◦4(∀n1∀s1 . (C ⊸ φfin)) → ∀n1∀s1 . (C ⊸ φfin)
lfp

S ∪ {φpre → (•3φ′
3 ∨ •4φ4)} ⊢ µf. ◦4 f → ∀n1∀s1 . (C ⊸ φfin)

intro-∀
S ∪ {φpre → (•3φ′

3 ∨ •4φ4)} ⊢ µf. ◦4 f → (C ⊸ φfin)
wrap

S ∪ {φpre → (•3φ′
3 ∨ •4φ4)} ⊢ φpre → (µf. ◦4 f → φfin)

sym
S ∪ {φpre → (•3φ′

3 ∨ •3φ3)} ⊢ φpre → (µf. ◦3 f → φfin)
sym

S ∪ {φpre → •2(φ′
2 ∨ φ2)} ⊢ φpre → (µf. ◦2 f → φfin)

sym
S ∪ {φpre → •φ1} ⊢ φpre → (µf. ◦ f → φfin)

sym
S ∪ {φpre → φpre} ⊢ φpre → (µf. ◦ f → φfin)

reach
S ∪ {φpre → φpre} ⊢ φpre ⇒ ψ

sum(l, u, b, s) =lfp (l>u∧s=b)∨(∃b1∃u1 . b1=b+u1∧u1=u−1∧sum(l, u1, b1, s))
ψ ≡ ∃n2∃s2 .

〈〈
·
〉
code

〈
n7→n2, s7→s2

〉
state

〉
cfg

∧ n2 = 0 ∧ sum(1, n1, s1, s2)

ψ′ ≡ ∃n2∃s2 .
〈〈

·
〉
code

〈
n7→n2, s7→s2

〉
state

〉
cfg

∧ n2 = 0 ∧ sum(1, n′
1, s

′
1, s2)

φ1 ≡
〈〈
n−−; cond

〉
code

〈
n 7→n1, s7→s1

〉
state

〉
cfg

∧ n1 ≥ 1 sum ≡ while(–n){s=s+n;}
φ2 ≡

〈〈
cond

〉
code

〈
n 7→n′

1, s7→s1
〉
state

〉
cfg

∧ n1 ≥ 2 cond ≡ if(n>0){s=s+n;sum}
φ′
2 ≡

〈〈
cond

〉
code

〈
n 7→n′

1, s7→s1
〉
state

〉
cfg

∧ n1 = 1 body ≡ s=s+n;sum
φ3 ≡

〈〈
body

〉
code

〈
n 7→n′

1, s7→s1
〉
state

〉
cfg

∧ n1 ≥ 1 C[□] ≡ φpre ∧ h
φ′
3 ≡

〈〈
·
〉
code

〈
n7→n′

1, s 7→s1
〉
state

〉
cfg

∧ n1 ≥ 1 n′
1 ≡ n1 − 1

φ4 ≡
〈〈
sum

〉
code

〈
n7→n′

1, s7→s′1
〉
state

〉
cfg

∧ n1 ≥ 1 s′1 ≡ s1 + n1 − 1

Figure 6.7: Verifying Functional Correctness of sum using Reachability Rules

are carried out and more lemmas are proved. The following domain-specific rule is used to
carry out symbolic execution and flush the newly-proved lemmas/rules that summarize the
semantics of SUM into Si:

(sym)
S ∪ Sk ⊢ φ→ (µf. ◦j f → ♢ψ)

S ∪ {φ→ φ′} ⊢ φ→ (µf. ◦i f → ♢ψ)
if Sk ̸= ∅ ∧ i ≥ 1 where (Sk, j) = next(φ′)

(6.32)
where next takes the current symbolic configuration, executes it according to the semantics
S, and outputs a rule that specifies the step (implemented similarly to [3]) and the number
of steps taken. We stop execution when the code cell ⟨. . .⟩code becomes empty (as in the case
of φ′

3) or contains the same code as that of φpre (as in the case of φ4). The collected rules
(e.g. {φpre → (•3φ′

3 ∨ •4φ4)}) will be used to simplify φpre later (e.g. as in the application of
(app-sym)).

151

6.4 ALGORITHMS

Our generic matching µ-logic prover runs a simple DFS algorithm on top of the proof rules
in Figure 6.2. In this section, we show the top-level DFS algorithm in Figure 6.8. We also
show the pattern matching algorithms used by the proof rules (pm) and (match-ctx) in
Figure 6.9.

6.4.1 Top-level DFS proof search algorithm

The top-level proof search algorithm in Figure 6.8 starts with procedure Prove on the goal
⊢ φ→ ψ, which uses two counters cru, ckt, both initialized to zero, to keep track of how many
times (Unfold-r) and (kt) have been applied. Proof search terminates (unsuccessfully) if
they exceed the preset search bounds, so the proof procedure is incomplete, which is expected.
Specifically, the algorithm consists of two cases: (Base Case) and (Recursive Call).

For (Base Case), procedure BasicProof is the exit point of the algorithm. For each proof
goal, it firstly attempts a basic proof, i.e., to discharge by applying rule (pm) and then
querying an SMT solver, where recursive symbols are treated as uninterpreted as in (smt)
proof rule. Intuitively, this step succeeds if the proof goal is simple enough such that a proof
by matching can be achieved.

For (Recursive Call), when a basic proof fails, we collect all possible transformations of
the proof goal, using (kt), (unfold-r) rules, into a disjunction of conjunctions of sub-goals
OrSet (i.e., a set of goal sets)—here, we only present the least fixpoint reasoning. The current
proof goal can be successfully discharged if there is one set Obs ∈ OrSet whose goals can all
be proved. The realization of the proof rules in our algorithm is straightforward, except for
two noteworthy points:

1. (kt) applications will exhaustively search for all possible candidates.

2. When a proof goal has an unsatisfiable left-hand side, the proof goal is trivially true,
which is denoted trivially_true in Figure 6.8, and is removed immediately.

Figure 6.8 essentially implements a (bounded) depth-first proof search, so the order in
which the sets of goals Obs ∈ OrSet are tried may affect performance greatly but not
effectiveness, i.e. the ability to prove the proof goals of our proof framework. The algorithm
is parametric in a procedure OrderByHeuristics (line 24) that controls the mentioned order.
For the experiments considered in this work, we use the following intuitive order, which
follows the fact that our base case is reached by a successful basic proof.

152

function Prove(φ→ ψ, cru, ckt)
⟨1⟩ if (BasicProof(φ→ ψ)) return true
⟨2⟩ let {pi}:=rec_sym(φ), {qi}:=rec_sym(ψ), OrSet := ∅
⟨3⟩ foreach (∀ỹ . C ′ ⊸ φ′) ∈ φ /* (match-ctx)*/
⟨4⟩ C0:=φ \ {∀ỹ . C ′ ⊸ φ′}
⟨5⟩ (Crest, θ):=cm(C0, C

′, ỹ) /*Section 6.4.2*/
⟨6⟩ φ′′:=Crest ∪ φ′θ
⟨7⟩ ob:=[φ′′ → ψ, cru, ckt], OrSet ∪={{ob}}
⟨8⟩ foreach pi ∈ φ, qi′ ∈ ψ /* (frame)*/
⟨9⟩ if (θ := pm([pi], [qi′], freeVar(ψ) \ freeVar(φ))) ̸= Failure
⟨10⟩ φ′:=φ \ {pi}, ψ′:=(ψ \ {qi′})θ
⟨11⟩ ob:=[φ′ → ψ′, cru, ckt], OrSet ∪={{ob}}
⟨12⟩ if (cru < MAXRIGHTBOUND) /* (unfold-r)*/
⟨13⟩ foreach (qi ∈ ψ)
⟨14⟩ foreach (ψj ∈ ({ψ1 . . . ψk} := UNFOLD(ψ, qi)))
⟨15⟩ ob := [φ→ ψj, cru + 1, ckt], OrSet ∪={{ob}}
⟨16⟩ if (ckt < KTBOUND) /* (kt) */
⟨17⟩ foreach (pi ∈ φ)
⟨18⟩ foreach (φj ∈ ({φ1, φ2, . . . φl} := KT(φ, pi)))
⟨19⟩ ob := [φj → ψ, cru, ckt + 1]
⟨20⟩ if (trivially_true(ob)) continue
⟨21⟩ Obs := Obs ∪ {ob}
⟨22⟩ OrSet ∪= {Obs}
⟨23⟩ if (OrSet = ∅) return false
⟨24⟩ OrSet := OrderByHeuristics(OrSet)
⟨25⟩ foreach (Obs ∈ OrSet)
⟨26⟩ if (ProveAll(Obs)) return true
⟨27⟩ return false

endfunction

function ProveAll(Obs)
⟨28⟩ foreach ([φ→ ψ, cru, ckt] ∈ Obs)
⟨29⟩ if (not Prove(φ→ ψ, cru, ckt))
⟨30⟩ return false;
⟨31⟩ return true

endfunction

Figure 6.8: Top-Level DFS Proof Search Algorithm

153

We proceed by a number of passes. In each pass, we first order the goals within each
Obs ∈ OrderSet. We then consider the order of OrderSet by comparing the last goal in
each set Obs ∈ OrderSet. Subsequent passes will not undo the work of the previous passes,
but instead work on the goals and/or sets of goals which are tied in previous passes. Below
are a few things to note.

1. Goals without recursive patterns on the right-hand side are prioritized.

2. Goals with recursive patterns on the right-hand side but not on the left-hand side are
considered next.

3. Goals with fewer existential variables are prioritized.

6.4.2 Context matching algorithm

Procedure cm is used to check whether the inner context can be matched with the outer
context. For example, suppose we have the following proof goal:

⊢ Couter [∀ỹ . (C ′ ⊸ φ′)]→ ψ (6.33)

cm(Couter , C
′, ỹ) takes as inputs the outer context Couter , the inner context C ′ and a list of

quantifier variables ỹ. To check if C ′ can be matched by (a part of) Couter , it builds the
following proof goal:

⊢ Couter → ∃ỹ . C ′ (6.34)

In (6.33), what we want is to initialize the universal variables ∀ỹ in order for the inner context
C ′ to be matched with some part of Couter . That is also the purpose of using the existential
variables ∃ỹ in (6.34). The change of the quantifier ỹ from universal to existential is because
we have moved the inner context C ′ from left-hand side to right-hand side.

To deal with (6.34), cm will call the modified version of the Prove function in Figure 6.8.
The difference between the modified version and the Prove function is only on the returning
result. Specifically, apart from returning true if the Prove function returns true, the modified
version additionally (1) returns the remaining, unmatched part of the left-hand side , denoted
Crest , after consuming all the matched constraints from the right-hand side, and (2) collects
the instantiation of ỹ, denoted θ, when applying rule (pm). (Note that Crest may contain
structure patterns as we have seen in the SL examples.) Specifically, if we can prove (6.34), we
have ⊢ Couter → C ′θ. Furthermore, Crest is the remaining part after removing the constraint
of C ′θ from Couter , so we have Crest [C

′θ[C ′θ ⊸ φ′θ]]→ ψ. As a result, we now can proceed
to prove new proof goal Crest [φ

′θ]→ ψ.

154

function pm([ψi]m1 , [φi]
m
1 , EV)

⟨32⟩ if m = 0 return { }
⟨33⟩ if ψ1 ≡ σ(ψ̃1) and φ1 ≡ σ′(φ̃1)
⟨34⟩ if σ ̸= σ′ return Failure
⟨35⟩ else if length(ψ̃1) ̸= length(φ̃1)
⟨36⟩ return Failure
⟨37⟩ else
⟨38⟩ [ψ′

i]
m′
1 = ψ̃1 ∪ [ψi]

m
1

⟨39⟩ [φ′
i]
m′
1 = φ̃1 ∪ [φi]

m
1

⟨40⟩ return pm([ψ′
i]
m′
1 , [φ′

i]
m′
1 , EV)

⟨41⟩ if ψ1 ≡ x and x ̸∈ EV
⟨42⟩ if φ1 ≡ x
⟨43⟩ return pm([ψi]m2 , [φi]

m
2 , EV)

⟨44⟩ else
⟨45⟩ return Failure
⟨46⟩ if ψ1 ≡ x and x ∈ EV
⟨47⟩ [ψ′

i]
m
2 = [ψi]

m
2 {x 7→ φ1}

⟨48⟩ [φ′
i]
m
2 = [φi]

m
2 {x 7→ φ1}

⟨49⟩ θ′ = pm([ψ′
i]
m
2 , [φ

′
i]
m
2 , EV)

⟨50⟩ return {x 7→ φ1} ∪ θ′
⟨51⟩ return Failure

endfunction

Figure 6.9: Pattern Matching Algorithm

6.4.3 Pattern matching algorithm

Procedure pm, used by rule (pm), implements a naive, brute-force algorithm as shown in
Figure 6.9 that does matching modulo associativity and/or associativity-and-commutativity.
Procedure pm takes as input

1. a list of “pattern” patterns [ψi]
m
1 ≡ [ψ1, . . . , ψm];

2. a list of “term” patterns [φj]
m
1 ≡ [φ1, . . . , φm];

3. a set of existential variablesEV with EV ∩
⋃n

1 freeVar(φj) = ∅ and EV ⊆
⋃m

1 freeVar(ψi).

Then it returns Failure or the match result θ with domains(θ) ⊆ EV and ψiθ ≡ φi, for all i.

6.5 EVALUATION

We implemented our proof framework in the K framework (Section 2.15). K has a modular
notation for defining rewrite systems. Since our proof framework is essentially a rewriting

155

system that rewrites/reduces proof goals to sub-goals, it is convenient to implement it in K.
We evaluated our prototype implementation using four representative logical systems for

fixpoint reasoning: first-order logic extended with least fixpoints (LFP), separation logic (SL),
linear temporal logic (LTL), and reachability logic (RL). Our evaluation plan is as follows. For
SL, we used the 280 benchmark properties collected by the SL-COMP’19 competition [122].
These properties are entailment properties about various inductively-defined heap structures,
including several hand-crafted, challenging structures. For LTL, we considered the (inductive)
axioms in the complete LTL proof system (see, e.g., [126, 127]). For LFP and RL, we
considered the program verification of a simple program sum that computes the total sum
from 1 to a symbolic input n. We shall use two different encodings to capture the underlying
transition relation: the LFP encoding defines it as a binary predicate and the RL encoding
defines it as a reachability rule.

Before we discuss our evaluation results, we would like to point out that it would be
unreasonable to expect that a unified proof framework can outperform the state-of-the-art
provers and algorithms for all specialized domains from the first attempt. We believe that
this is possible and within our reach in the near future, but it will likely take several years
of sustained effort. We firmly believe that such effort will be worthwhile spending, because
if successful then it will be transformative for the field of automated deduction and thus
program verification. Here, we focus on demonstrating the generality of our proof framework.
We shall also report the difficulties that we experienced.

Our first evaluation is based on the standard separation logic benchmark set collected
by SL-COMP’19 [122]. These benchmarks are considered challenging because they are
related to heap-allocated data structures along with user-defined recursive predicates crafted
by participants to challenge the competitors. Among the benchmarks, we focus on the
qf_shid_entl division that contains entailment problems about inductive definitions. This
division is considered the hardest one, specifically because many of its tests require proofs
by induction. As such, this division is a good case study for testing the generality of our
generic proof framework. Furthermore, heap provers are currently considered to have the
most powerful implementations of automated inductive reasoning, so we would not be far
from the truth considering a comparison of our prototype with these as a comparison with
the state-of-the-art in automated inductive reasoning.

To set up our prover for the SL benchmarks, we instantiate it with the set ΓSL of axioms
that captures SL, as given in Section 5.3. Note that the associativity and commutativity of
φ1 ∗φ2 are handled by the built-in pattern matching algorithms (see Figure 6.9), so the most
important axioms are the two specifying non-zero locations and no-overlapped heap unions.
The experimental results show that our generic prover can prove 265 of the 280 benchmark

156

Table 6.1: Selected separation logic properties, automatically proved by our prover

sorted_list(x,min) → list(x)
sorted_list1(x, len,min) → list1(x, len)
sorted_list1(x, len,min) → sorted_list(x,min)
sorted_ls(x, y,min,max) ∗ sorted_list(y,min2) ∧ max ≤ min2 → sorted_list(x,min)
lr(x, y) ∗ list(y) → list(x)
lr(x, y) → ll(x, y)
ll(x, y) → lr(x, y)
ll1(x, y, len1) ∗ ll1(y, z, len2) → ll1(x, z, len1+len2)
lr1(x, y, len1) ∗ list1(y, len2) → list1(x, len1+len2)
ll1(x, last, len) ∗ (last 7→ new) → ll1(x, new, len+ 1)
dls(x, y) ∗ dlist(y) → dlist(x)
d̂ls1(x, y, len1) ∗ d̂ls1(y, z, len2) → d̂ls1(x, z, len1+len2)
dls1(x, y, len1) ∗ dlist1(y, len2) → dlist1(x, len1+len2)
avl(x, hgt,min,max, balance) → bstree(x, hgt,min,max)
bstree(x, height,min,max) → bintree(x, height)

tests, placing it third place among all participants.
Interestingly, we noted that (frame) is not necessary for most tests. Only 12 out of the

265 tests used (frame) reasoning. More experiments are needed to draw any firm conclusion,
but it could be (frame) reasoning mostly improves performance, as it reduces the matching
search space and thus proof search terminates faster, but does not necessarily increase the
expressiveness of the prover. The 15 tests that our prover cannot handle come from the
benchmarks of automata-based heap provers [114, 128]. These benchmarks demand more
sophisticated SL-specific reasoning that require more complex properties about heaps/maps
than what our prover can naively derive from the ΓSL theory with its current degree of
automation; while we certainly plan to handle those as well in the near future, we would like
to note that they are not related to fixpoint reasoning, but rather to reasoning about maps.
The two provers that outperform our generic prover, Songbird and S2S, are both specialized
for SL. Compared with generic provers such as Cyclist [129], our prover proves 13 more
tests.

Table 6.1 illustrates some of the more interesting SL properties that our prover can verify
automatically. These are common lemmas about heap structures that arise and are collected
when verifying real-world heap-manipulating programs. For example, the property on the
first line says that a sorted list is also a list, a typical verification condition arising in formal
verification. Table 6.1 also shows several proof goals about singly-linked lists and list segments
(specified by predicates ls, list, ll, lr, etc.), doubly-linked lists and list segments (specified by

157

Table 6.2: Axioms in the complete LTL proof system, automatically proved by our prover

(k□) □(φ1 → φ2)→ (□φ1 → □φ2)
(ind) φ ∧□(φ→ ◦φ)→ □φ
(u1) φ1 U φ2 → ⋄φ2

(u2.1) φ1 U φ2 → φ2 ∨ φ1 ∧ ◦(φ1 U φ2)
(u2.2) φ2 ∨ φ1 ∧ ◦(φ1 U φ2)→ φ1 U φ2

predicates dls, dlist, etc.), and trees.
Our second study is to automatically prove the inductive axioms in the complete LTL

proof system, shown in Table 6.2, whereas the proof tree of the most interesting of them,
(ind), has been given in Section 6.3.4. Note that LTL is essentially a structure-less logic,
as its formulas are only built from temporal operators and propositional connectives, and
its models are infinite traces of states that have no internal structures and are modeled as
“points”. The structure-less-ness of LTL made fixpoint reasoning for it simpler, as no context
reasoning or frame reasoning was needed.

Our final study considers a simple program sum that computes the total from 1 to a
symbolic input n. We do the verification of sum following two approaches: RL and LFP. The
reachability logic (RL) approach has been illustrated in Section 2.14. For LFP, program
configurations are encoded as FOL terms and the program semantics is encoded as a binary
FOL predicate that captures the transition relation. In particular, reachability is defined as a
recursive predicate based on the semantics. Our prover then becomes a (language-independent)
program verifier, different from Hoare-style verification (where a language-specific verification
condition generator is required).

We ran these tests on a single core virtual machine with 8GB of RAM. The SL-COMP’19
tests took a total 13 hours to finish, including two outliers that took approximately one and
three hours to complete. The two LTL tests took approximately three minutes, while the ten
first order logic tests took seven minutes to complete and the sum program takes a minute
to complete. To reiterate, we do not expect our prover to outperform specialized provers
this early in its development. These results do, however, show that a unified, powerful and
efficient proof framework is within reach.

158

Chapter 7: APPLICATIVE MATCHING µ-LOGIC (AML)

In an ideal unifying semantics-based language framework, all programming languages must
have their formal syntax and semantics definitions. In addition, all execution and formal
analysis tools of a given programming language L must be automatically generated from
its formal definition ΓL, where ΓL is a logical theory that axiomatically define the static
configurations and dynamic behaviors of all programs of L. As discussed in Section 2.15,
the K framework is one of the many efforts in pursuing above vision of an ideal unifying
semantics-based language framework. K has been used to define the complete formal semantics
of many large programming languages and generate their execution and formal analysis tools.

A major research question has been this: what is the right logical foundation of K? This is
a challenging question to answer, for K is such a complex artifact whose implementation has
over 500,000 lines of code in multiple programming languages. Previously, a tentative answer
was given by matching logic (Section 2.13) and reachability logic (Section 2.14). Matching
logic was used to specify and reason about the static configurations of programs as well as any
(FOL) constraints over them. Reachability logic was used to specify and reason about the
dynamic reachability properties. In particular, reachability logic has a language-independent
proof system (Figure 2.12) that supports sound and relatively complete verification for all
programming languages. Unfortunately, reachability logic cannot express more dynamic
behaviors/properties such as liveness properties, which can be expressed using a temporal
logic or modal µ-calculus. Besides the combination of matching logic and reachability logic,
there are also other attempts to find a logical foundation for K, including one using (double-
pushout) graph transformations [130], one based on a translation to Isabelle [131], and one
based on a translation to (coinduction in) Coq [132]. None of these are incorporated within
K’s code base because none of them are satisfactory: not only they result in heavy translations
with a big representational distance from the original definition, but also they focus on one
aspect of K (e.g., reachability, or partial correctness, or coinductive).

To overcome these limitations, we propose matching µ-logic in Chapter 4 that not only
unifies matching logic and reachability logic but also captures many important logics and
calculi as its theories. We carry out an extensive study on its expressive power and show that
LFP, separation logic with recursive predicates, modal µ-calculus, temporal logics, dynamic
logic, λ-calculus, and type systems can be defined in matching µ-logic as theories. Therefore,
matching µ-logic is a good candidate for serving as the logical foundation of K.

However, matching µ-logic suffers from at least two main technical inconveniences. Firstly,
matching µ-logic is more complex than necessary. As a many-sorted logic, matching µ-logic has

159

theories that can contain multiple, sometimes infinitely many sorts, each with its own carrier
set in models. Matching µ-logic uses many-sorted symbols, such as σ ∈ Σs1...sn,s, of fixed
arities, to build patterns of the appropriate sorts. This places a burden on implementations,
which need to store the sorts and the symbols arities, carry out well-formedness checking,
and implement a more-complex-than-needed proof checker. More importantly, the fact that
the structure of a many-sorted universe is hardwired in matching µ-logic actually makes
it less general, when it comes to more complex sort structures such as parametric sorts or
ordered sorts (i.e., subsorts). As an example, suppose we have a sort Nat of natural numbers
and we want to define parametric lists. To do that, we have to introduce a new sort List{s}
for every sort s, where List{s} is the sort of all the lists over elements of sort s. As a result,
we introduce infinitely many sorts: Nat, List{Nat}, List{List{Nat}}, etc.. Even though we
can handle infinitely many sorts in theory, no implementation can handle them unless we
come up with certain finite representations. In addition, we have to introduce infinitely many
symbols for the common parametric operations over the parametric lists and define infinite
many axioms for them (we only show the axioms for append as an example):

nil{s} ∈ Σϵ,List{s} (7.1)

cons{s} ∈ Σs List{s},List{s} (7.2)

append{s} ∈ ΣList{s} List{s},List{s} (7.3)

append{s}(cons{s}(x : s, l : List{s}), l′ : List{s}) (7.4)

= cons{s}(x : s, append{s}(l : List{s}, l′ : List{s})) (7.5)

This is at best inconvenient for matching µ-logic implementations. Either we incorporate
parametric lists as a built-in feature into the implementations, or we invent some ad-hoc
meta-level notation to specify the infinite theory of parametric lists in some finite way. Neither
approach is optimal: the former lacks generality while the latter is heavy and superficial.
Most many-sorted FOL systems forgo parametricity all together.

Secondly, matching µ-logic enforces a strict separation among elements, sorts, and symbols.
Intuitively, elements represent data; sorts represent the types of data; and symbols represent
operations or predicates over data. Thus in matching µ-logic, there is a distinction among
data, types, and operations/predicates. While such a distinction is beneficial in a classic,
algebraic setting, it can get inconvenient when it comes to, say, functional programming,
where functions are also first-class citizens as other types of data.

The purpose of this chapter is to introduce a methodological solution, called applicative
matching µ-logic, abbreviated as AML, which addresses the above technical inconveniences.

160

We call AML a methodological solution because it is not an extension nor a modified version
of matching µ-logic. Instead, AML is an instance of matching µ-logic where we restrict the
use of sorts and many-sorted symbols to an absolute minimum. In AML, we define only
one sort for all patterns and enforce all symbols to be constant symbols except for one,
which is a binary symbol called application (see Section 7.1). We will show that AML has
the same expressive power as matching µ-logic despite it being much more simpler. What
are hardwired in matching µ-logic, such as sorts and many-sorted symbols, can now be
axiomatically defined in AML as theories, just like how other mathematical instruments such
as equality and functions are axiomatically defined in matching µ-logic as theories. AML is
matching µ-logic at extreme simplicity without loss of expressive power.

It should be noted that we do not intend to argue which is better, AML or matching
µ-logic. As said, AML is not a new logic, but rather a restricted use of matching µ-logic,
a self-restraint version of it. This is why we call AML a methodology. Recall the above
parametric lists example. Now we have two ways to define them. One is to use the full power
of matching µ-logic by introducing infinitely many sorts and symbols like we have seen earlier.
The other is to use AML and axiomatically define sorts and the many-sorted symbols. Both
approaches have their merits. The former reduces the handling of sorts to the logic while
the latter can give us a finite theory, which is easier to handle in implementations. Another
example is order-sorted structures, where a sort s can be a subsort of another sort s′, written
s ≤ s′. It is enforced that the carrier set of s is a subset of that of s′. Here, the many-sorted
infrastructure of matching µ-logic has few advantages but burdens. To define subsorts we
need to introduce a function cs

′
s : s → s′, called a coercion function from s to s′, for every

s ≤ s′. Furthermore, we need to specify that cs′s is injective. For any s ≤ s′ ≤ s′′, we also
need to specify the following triangle property injs

′′

s′ (inj
s′

s (x : s)) = injs
′′

s (x : s). All these extra
mechanisms regarding the coercion functions will not be needed in AML.

In what follows we will present AML in full detail. We will present a reduction from
matching µ-logic to AML, which implies that AML has the same expressive power as matching
µ-logic. Then we will revisit the examples of subsorts and parametric sorts and use them to
illustrate the unique advantage of AML (as a methodology) when it comes to specifying more
advanced sort structures. Finally, we will present a proof checker based on AML. Thanks to
the simplicity of AML, our proof checker has only 200 lines of code in Metamath [13].

7.1 AML AS AN INSTANCE OF MATCHING µ-LOGIC

AML is an instance of matching µ-logic when the signature (S,Σ) has the form S = {⋆}
and Σ = C∪{app}, where ⋆ is a (dummy) sort, C is a set of constant symbols, and app ∈ Σ⋆⋆,⋆

161

is a binary symbol, called application. The syntax, semantics, and proof system of AML
follows from the syntax, semantics, and proof system of matching µ-logic over the above
restricted signatures, but we can introduce more simplified notations for AML.

Firstly, we can drop the dummy sort ⋆ and keep things unsorted. In particular, we
have a set EV of unsorted element variables and a set SV of unsorted set variables. We
denote them by x, X, etc., instead of x : ⋆ or X : ⋆. Secondly, app is the only non-constant
symbol in AML so let us add it directly to the syntax of AML patterns. Furthermore, we
write φ1 φ2 for app(φ1, φ2) and write φ1 φ2 . . . φn for (. . . (φ1 φ2) . . . φn), i.e., application
is left associative. Finally, we decide to use {⊥,→} rather than {¬,→} as our primitive
propositional connectives, so we have a more similar representation to functional programming
languages. Now we can present AML as follows:

Definition 7.1. An AML signature Σ is a set of constant symbols. The set of AML
Σ-patterns, written AMLPattern(Σ), is inductively defined by the following grammar:

φ ::= x | X | σ | φ1 φ2 | ⊥ | φ1 → φ2 | ∃x . φ | µX .φ (7.6)

where µX .φ requires that φ is positive in X. An AML Σ-model is a tuple (M, {_•M_}, {σM |
σ ∈ Σ}) where M is a nonempty set, _•M_ : M ×M → P(M), and σM ⊆M for every σ ∈ Σ.
An AML valuation ρ = (ρEV , ρSV) where ρEV : EV →M and ρSV : SV → P(M). Given M
and ρ, the evaluation of φ ∈ AMLPattern(Σ) is also denoted by |φ|M,ρ and is defined the
same way in matching µ-logic.

The name of AML comes from applicative structures, which are algebras with a binary
operation for application. Applicative structures are important in the study of combinations
and λ-calculus. Here, we only show that applicative structures are an special case of AML
models, where the application symbol is interpreted as a total function.

Proposition 7.1. An applicative structure (A,_•A_) is a pair of a nonempty set A and a
function _•A_ : A × A → A [38, Definition 5.1.1]. Then, applicative structures are AML
∅-models M where card(appM(a, b)) = 1 for all a, b ∈M .

The common mathematical instruments such as sorts, equality, membership, and functions
can be defined in AML as theories. Since we have shown that all of them can be defined in
matching µ-logic as theories, we only need to show that matching µ-logic can be defined in
AML as theories. We do that in Section 7.2.

162

7.2 DEFINING MATCHING µ-LOGIC IN AML

To define matching µ-logic in AML, we need to define sorts and many-sorted symbols. The
idea is straightforward. We first introduce a distinguished symbol ⊤_ called the inhabitant
symbol, and write ((⊤_)φ), which is the result of applying ⊤_ to φ using the AML application
symbol, as ⊤φ. Then for every sort s we introduce it as a (constant) symbol in AML. Then
the pattern ⊤s is matched by all the elements of sort s.

Now we define in detail the reduction from matching µ-logic to AML. Let us fix a
matching µ-logic signature (SMmL,ΣMmL) where EV MmL = {EV MmL

s }s∈SMmL and SV MmL =

{SV MmL
s }s∈SMmL are the two SMmL-indexed sets of element and set variables, respectively.

Let EV AML = {xs | x : s ∈ EV MmL
s } be the set of AML unsorted element variables. Similarly,

let SV AML = {Xs | X : s ∈ SV MmL
s } be the set of AML unsorted set variables. We keep track

of the original sorts as superscripts so we can restore the sort information after translation.
We also feel free to use x, y, X, Y , etc. in AML whenever we are defining AML axioms. Let
ΣAML = {⌈_⌉,⊤_} ∪ SMmL ∪ ΣMmL, where ⌈_⌉ and ⊤_ are two distinguished symbols. Let
ΓAML be the AML theory that includes the following axioms:

(Definedness, AML version) ⌈x⌉ (7.7)

(Nonempty Carrier Set) ⊤s ̸= ∅ for each s ∈ SMmL (7.8)

(Symbol Arity) σ⊤s1 . . . ⊤sn ⊆ ⊤s for each σ ∈ ΣMmL
s1...sn,s

(7.9)

We define the translation from matching µ-logic (SMmL,ΣMmL)-patterns to AML (ΣAML)-
patterns as follows:

AML(φs) = wellsorted(φs)→ (AML2(φs) = ⊤s) (7.10)

wellsorted(φs) =
∧

x : s′∈EV MmL

xs
′ ∈ ⊤s ∧

∧
X : s′∈SV MmL

Xs′ ⊆ ⊤s (7.11)

AML2(x : s) = xs (7.12)

AML2(X : s) = Xs (7.13)

AML2(σ(φ1, . . . , φn)) = σAML2(φ1) . . . AML2(φn) (7.14)

AML2(φs ∧ φ′
s) = AML2(φs) ∧ AML2(φ

′
s) (7.15)

AML2(¬φs) = ¬sAML2(φs) ≡ ¬AML2(φs) ∧ ⊤s (7.16)

AML2(∃x : s′ . φ) = ∃xs . (xs ∈ ⊤s) ∧ AML2(φ) (7.17)

AML2(µX : s . φ) = µXs .AML2(φ) (7.18)

AML(Γ) = {AML(ψ) | ψ ∈ Γ} (7.19)

163

Proposition 7.2. For any matching µ-logic theory Γ and pattern φ, Γ ⊨ φ iff ΓAML ∪
AML(Γ) ⊨ AML(φ).

Proof. We first define a translation from AML (ΣAML,ΓAML)-models to matching µ-logic
(ΣMmL,ΣMmL)-models. Consider an arbitrary (ΣAML,ΓAML)-model

MAML = (MAML, {_•MAML_}, {σMAML}σ∈ΣAML) (7.20)

We define the corresponding (ΣMmL,ΣMmL)-model

MMmL = ({MMmL
s }s∈SMmL , {σMMmL}σ∈ΣMmL) (7.21)

where

1. MMmL
s = |⊤s|MAML for every s ∈ SMmL;

2. σMMmL(as1 , . . . , asn) = |σ x1 . . . xn|MAML,ρ where ρ is any valuation such that ρ(xi) = asi ,
for all asi ∈MMmL

si
, 1 ≤ i ≤ n.

The above definition is well-defined because of (Nonempty Carrier Set) and (Symbol

Arity). Also note that the above translation is surjective, i.e., for any (ΣMmL,ΣMmL)-model
M , we can find a (ΣAML,ΓAML)-model MAML, whose corresponding (ΣMmL,ΣMmL)-model
MMmL = M . Furthermore, for any MMmL-valuation ρMmL = (ρMmL

EV , ρMmL
SV), we define the

corresponding MAML-valuation ρAML = (ρAML
EV , ρAML

SV) by letting ρAML
EV (xs) = ρMmL

EV (x : s) and
ρAML
SV (Xs) = ρMmL

SV (X : s).
Next, we show that for any matching µ-logic formula φ and MMmL-valuation ρMmL =

(ρMmL
EV , ρMmL

SV),
|φ|MMmL,ρMmL = |AML2(φ)|MAML,ρAML (7.22)

by structural induction on φ. If φ is x : s or X : s, the conclusion holds by the definition of
ρAML. If φ is σ(φ1, . . . , φn), the conclusion holds by the definition of σMMmL . If φ is φ1 ∧ φ2

or ¬φ1, the conclusion holds by the semantics of matching µ-logic and AML; note that it is
important that the AML translation for ¬ uses ¬s, which restricted the result within sort
s. If φ is ∃x : s′ . φ, the conclusion holds by the semantics of matching µ-logic and AML, as
well as the definition of MMmL

s′ . If φ is µX : s . φ, the conclusion holds by noting that the
functions FAML : P(MAML)→ P(MAML) and FAML : P(MMmL

s)→ P(MMmL
s) given by

FMmL(A) = |φ|MMmL,ρ[A/X : s] for A ⊆MAML (7.23)

FAML(As) = |AML2(φ)|MAML,ρ[A/Xs] for As ⊆MMmL
s (7.24)

164

are equal over MMmL
s , i.e., FAML|MMmL

s
= FMmL; this is proved by applying the induction

hypothesis. Furthermore, lfpFMmL = lfpFAML. This is because FMmL is essentially a
restriction of FAML to a smaller domain, i.e., MMmL

s ⊆ MAML, so lfpFAML ⊆ lfpFMmL.
However, it cannot be the case that lfpFAML ⊊ lfpFMmL, because lfpFAML, which we know
is include by lfpFMmL, which is then included by MMmL

s , must also be a fixpoint of FMmL.
Since lfpFMmL is the least fixpoint, we conclude that lfpFMmL = lfpFAML. And thus, we
finish the structural induction.

Next, we show that for any matching µ-logic formula φ, MMmL ⊨ φ iff MAML ⊨ AML(φ).
This is proved by noting that for any MMmL-valuation ρMmL and its corresponding MAML-
valuation ρAML, |ws(φ)|MAML,ρAML =MAML. Furthermore, for an arbitrary MAML-valuation ρ
such that |ws(φ)|MAML,ρ =MAML, we can find an MMmL-valuation ρMmL whose corresponding

MAML-valuation ρAML freeVar(φ)∼ ρ.
Finally, we conclude that Γ ⊨ φ iff ΓAML ∪ AML(Γ) ⊨ AML(φ), by noting that the

translation from MAML to MMmL is surjective. QED.

7.3 CASE STUDY: DEFINING ADVANCED SORT STRUCTURES IN AML

We have seen how many-sorted structures can be defined as AML theories. In this section
we show how to define more advanced sort/type structures as AML theories, including
subsorts, parametric sorts, function types, and dependent types.

7.3.1 Defining subsorts

For sorts s and s′, we say that s is a subsort of s′, written s ≤ s′, if Ms ⊆Ms′ . Since in AML,
the carrier sets of s and s′ are expressed by ⊤s and ⊤s′ , respectively, it is straightforward to
define the subsort relation s ≤ s′ by

(Subsort) ⊤s ⊆ ⊤s′ (7.25)

More interestingly, we can axiomatically define subsort overloading of operations. For example,
let Nat and Int be two sorts with the axiom ⊤Nat ⊆ ⊤Int stating that Nat is a subsort of Int.
We can define plus as an overloaded operation over Nat and Int as follows:

(Plus, Arity 1) plus⊤Nat⊤Nat ⊆ ⊤Nat (7.26)

(Plus, Arity 2) plus⊤Int⊤Int ⊆ ⊤Int (7.27)

165

Using the above axioms, we can prove that plus(1, 2) has sort both Nat and Int while
plus(−1,−2) has only sort Int but not Nat.

It is known (see, e.g., [133]) that ordered sorts algebras (OSA) can be defined in a many-
sorted setting, where the subsort relation is captured by the coercion functions cs′s ∈ Σs,s′

for all s ≤ s′. Intuitively, cs′s denotes the embedding from sort s to sort s′. This approach,
however, is not practically useful, as noticed in [134, pp. 9]. For example, consider three
sorts s ≤ s′ ≤ s′′, a constant a of sort s, and a function f ∈ Σs′′,s′′ . Then, the term f(x)

has multiple parses when translated to FOL, e.g.: f(cs′′s (a)) and f(cs′′s′ (cs
′
s (a))). This means

that all tools for OSA based on FOL need to do reasoning modulo the triangle property
cs

′′
s (a) = cs

′′

s′ (c
s′
s (a)), which is inconvenient and causes huge overhead. In contrast, AML

provides a more succinct and native approach to handling subsorts, by directly defining
subsort axioms, without needing to introduce coercion functions.

7.3.2 Defining parametric sorts

A parametric sort, such as List{s}, can be viewed as a function over sorts. Indeed, given a
sort s, List{s} returns its list sort. Since AML treats sorts and functions as regular elements,
parametric sorts can be directly defined as functions. Let us define an AML symbol Sort
whose (intended) elements are sorts. We add an axiom Nat ∈ Sort so Nat becomes a sort.
Then, we define a function List : Sort → Sort, called sort constructor, which takes a sort s
and produces the sort List s of lists parametric in s. Standard list operations can be also
defined as functions:

∀s : Sort .∃l′ : List s . nil = l′ (7.28)

∀s : Sort .∀x : s .∀l : List s .∃l′ : List s . consx l = l′ (7.29)

∀s : Sort .∀l1 : List s .∀l2 : List s .∃l′ : List s . append l1 l2 = l′ (7.30)

Note that the above axioms are similar to the (Function) axioms in matching µ-logic but
here s is a variable ranging over Sort.

7.3.3 Defining function types

Functions are also elements in AML, and function sorts can be built by Function : Sort×
Sort→ Sort, with the following axiom

(Function Sort) ∀s : Sort .∀s′ : Sort .⊤Function s s′ = ∃f . f ∧ ∀x : s .∃y : s′ . fx = y (7.31)

166

stating that Function s s′ consists of all f that behaviors as a function from s to s′. For
notational simplicity, we define the notation

Function s1 s2 . . . sn s ≡ Function s1 (Function s2 . . . (Function sn s) . . .) (7.32)

As an example, we define two higher-order list operations: fold and map, which are common
in functional programming languages.

∀s : Sort .∀s′ : Sort . fold : Function s′ s s′ × s′ × List s→ s′ (7.33)

∀f :Function s′ s s′ .∀x : s′ . fold f x nil = x (7.34)

∀f :Function s′ s s′ .∀x : s′ . ∀y : s .∀l : List s . fold f x (cons y l) = fold f (fxy) l (7.35)

∀s : Sort .∀s′ : Sort .map : Function s s′ × List s→ List s′ (7.36)

∀g :Function s s′ .map g nil = nil (7.37)

∀g :Function s s′ .∀y : s .∀l : List s .map g (cons y l) = cons (g y) (map g l) (7.38)

7.3.4 Defining dependent types

Dependent types are also functions over sorts/types except that the parameters are data
instead of sorts. That, however, makes no big difference in AML, for it makes no distinction
between elements, sorts, and operations at all. All of them are are uniformly defined using
patterns. Therefore, we can define dependent types the same way we define parametric sorts.
As an example, suppose we want to define a dependent sort MInt of machine integers, such
that MIntn for n ≥ 1 is the sort of machine integers of size n, i.e., natural numbers less than
2n. For clarity, we define a new sort Size for positive natural numbers and axiomatize MInt

as follows:

⊤Size = succ⊤Nat (7.39)

MInt : Size→ Sort (7.40)

∀n : Size .⊤MIntn = ∃x :Nat . x ∧ x < power2n (7.41)

where power2 : Nat→ Nat (power of 2) and _<_ (less-than) are defined in the usual way. We
can then define functions over machine integers, such as mplus and mmult, by defining their
arities and then reusing the addition plus and the multiplication mult over natural numbers:

∀n : Size .mplus : MIntn×MIntn→ MInt (succn) (7.42)

167

1 $c \imp () #Pattern |- $.
2

3 $v ph1 ph2 ph3 $.
4 ph1-is-pattern $f #Pattern ph1 $.
5 ph2-is-pattern $f #Pattern ph2 $.
6 ph3-is-pattern $f #Pattern ph3 $.
7

8 imp-is-pattern $a #Pattern (\imp ph1 ph2) $.
9

10 proof-rule-prop-1
11 $a |- (\imp ph1 (\imp ph2 ph1)) $.
12

13 proof-rule-prop-2
14 $a |- (\imp (\imp ph1 (\imp ph2 ph3))
15 (\imp (\imp ph1 ph2)
16 (\imp ph1 ph3))) $.
17

18 ${
19 proof-rule-mp.0 $e |- (\imp ph1 ph2) $.
20 proof-rule-mp.1 $e |- ph1 $.
21 proof-rule-mp $a |- ph2 $.
22 $}

23 imp-refl $p |- (\imp ph1 ph1)
24 $=
25 ph1-is-pattern ph1-is-pattern
26 ph1-is-pattern imp-is-pattern
27 imp-is-pattern ph1-is-pattern
28 ph1-is-pattern imp-is-pattern
29 ph1-is-pattern ph1-is-pattern
30 ph1-is-pattern imp-is-pattern
31 ph1-is-pattern imp-is-pattern
32 imp-is-pattern ph1-is-pattern
33 ph1-is-pattern ph1-is-pattern
34 imp-is-pattern imp-is-pattern
35 ph1-is-pattern ph1-is-pattern
36 imp-is-pattern imp-is-pattern
37 ph1-is-pattern ph1-is-pattern
38 ph1-is-pattern imp-is-pattern
39 ph1-is-pattern proof-rule-prop-2
40 ph1-is-pattern ph1-is-pattern
41 ph1-is-pattern imp-is-pattern
42 proof-rule-prop-1 proof-rule-mp
43 ph1-is-pattern ph1-is-pattern
44 proof-rule-prop-1 proof-rule-mp
45 $.

Figure 7.1: Example Metamath Formalization of AML (Extract) and Its Proofs

∀n : Size .∀x :MIntn∀y :MIntn .mplusx y = plusx y (7.43)

∀n : Size .∀m : Size .mmult : MIntn×MIntm→ MInt (plusnm) (7.44)

∀n : Size .∀m : Size .∀m : Size∀x :MIntn∀y :MIntm.mmultx y = multx y (7.45)

7.4 AML PROOF CHECKER

We present an AML proof checker implemented in Metamath [13]. Metamath is a tiny
language to state abstract mathematics and their proofs in a machine-checkable style. We
use Metamath to formalize the syntax and proof system of AML and encode AML proofs.
Metamath is known for its simplicity and efficient proof checking. Metamath proof checkers
can be implemented in a few hundreds lines of code and can check thousands of theorems in a
second. Our formalization follows closely the syntax of AML. We also need to formalize some
metalevel operations such as free variables and capture-avoiding substitution. An innovative
contribution is a generic way to handling notations.

7.4.1 Metamath overview

At a high level, a Metamath source file consists of a list of statements. The main ones are:

1. constant statements ($c) that declare Metamath constants;

168

2. variable statements ($v) that declare Metamath variables, and floating statements ($f)
that declare their intended ranges;

3. axiomatic statements ($a) that declare Metamath axioms, which can be associated
with some essential statements ($e) that declare the premises;

4. provable statements ($p) that states a Metamath theorem and its proof.

Figure 7.1 defines the fragment of AML with only implications. We declare five constants
in a row in line 1, where \imp, (, and) build the syntax, #Pattern is the type of patterns,
and |- is the provability relation. We declare three metavariables of patterns in lines 3-6,
and the syntax of implication φ1 → φ2 as (\imp ph1 ph2) in line 8. Then, we define
AML proof rules as Metamath axioms. For example, lines 18-22 define the rule (Modus

Ponens). In line 23, we show an example (meta-)theorem and its formal proof in Metamath.
The theorem states that ⊢ φ1 → φ1 holds, and its proof (lines 25-44) is a sequence of labels
referring to the previous axiomatic/provable statements.

Metamath proofs are very easy to proof-check, which is why we use it in our work. The
proof checker reads the labels in order and push them to a proof stack S, which is initially
empty. When a label l is read, the checker pops its premise statements from S and pushes l
itself. When all labels are consumed, the checker checks whether S has exactly one statement,
which should be the original proof goal. If so, the proof is checked. Otherwise, it fails.

As an example, we look at the first 5 labels of the proof in Figure 7.1, line 25:

1 // Initially, the proof stack S is empty
2 ph1-is-pattern // S = [#Pattern ph1]

3 ph1-is-pattern // S = [#Pattern ph1 ; #Pattern ph1]

4 ph1-is-pattern // S = [#Pattern ph1 ; #Pattern ph1 ; #Pattern ph1]

5 imp-is-pattern // S = [#Pattern ph1 ; #Pattern (\imp ph1 ph1)]

6 imp-is-pattern // S = [#Pattern (\imp ph1 (\imp ph1 ph1))]

where we show the stack status in comments. The first label ph1-is-pattern refers to a
$f-statement without premises, so nothing is popped off, and the corresponding statement
#Pattern ph1 is pushed to the stack. The same happens, for the second and third labels.
The fourth label imp-is-pattern refers to a $a-statement with two metavariables of patterns,
and thus has 2 premises. Therefore, the top two statements in S are popped off, and the
corresponding conclusion #Pattern (\imp ph1 ph1) is pushed to S. The last label does
the same, popping off two premises and pushing #Pattern (\imp ph1 (\imp ph1 ph1)

) to S. Thus, these five proof steps prove the wellformedness of φ1 → (φ1 → φ1).

169

7.4.2 Main definitions

We now go through the main definitions of AML in Metamath and emphasize some
highlights. The entire formalization has 200 lines of Metamath code, as shown in Section 7.4.3.

The syntax of AML patterns is formalized below:

1 $c \bot \imp \app \exists \mu () $.
2 var-is-pattern $a #Pattern xX $.
3 symbol-is-pattern $a #Pattern sg0 $.
4 bot-is-pattern $a #Pattern \bot $.
5 imp-is-pattern $a #Pattern (\imp ph0 ph1) $.
6 app-is-pattern $a #Pattern (\app ph0 ph1) $.
7 exists-is-pattern $a #Pattern (\exists x ph0) $.
8 ${ mu-is-pattern.0 $e #Positive X ph0 $.
9 mu-is-pattern $a #Pattern (\mu X ph0) $. $}

Note that we omit the declarations of metavariables (such as xX, sg0, . . .) because their
meaning can be easily inferred. The only nontrivial case above is mu-is-pattern, where we
require that ph0 is positive in X, discussed below.

We need the following metalevel operations and/or assertions: (1) positive (and negative)
occurrences of variables; (2) free variables; (3) capture-avoiding substitution; (4) application
contexts; (5) notations. Item 1 is needed to define the syntax of µX .φ, while Items 2-5 are
needed to define the proof system. As an example, we show how to define capture-avoiding
substitution. We first define a Metamath constant

1 $c #Substitution $.

which serves as an assertion symbol. The intuition of #Substitution is that if we can prove
#Substitution ph ph’ ph” xX, then we have ph ≡ ph’[ph”/xX]. The definition is given
based on the structure of ph’. For example, the following defines #Substitution when ph’

is an implication:

1 ${ substitution-imp.0 $e #Substitution ph1 ph3 ph0 xX $.
2 substitution-imp.1 $e #Substitution ph2 ph4 ph0 xX $.
3 substitution-imp
4 $a #Substitution (\imp ph1 ph2) (\imp ph3 ph4) ph0 xX $. $}

When ph’ is ∃x . φ or µX .φ, we need to consider α-renaming to avoid variable capture. We
show the case when ph’ is ∃x . φ below:

1 substitution-exists-shadowed
2 $a #Substitution (\exists x ph1) (\exists x ph1) ph0 x $.
3 ${ $d xX x $.
4 $d y ph0 $.
5 substitution-exists.0 $e #Substitution ph2 ph1 y x $.
6 substitution-exists.1 $e #Substitution ph3 ph2 ph0 xX $.
7 substitution-exists

170

8 $a #Substitution (\exists y ph3) (\exists x ph1) ph0 xX $. $}

There are two cases. The first case substitution-exists-shadowed is when the substitution
is shadowed. The second case substitution-exists is the general case, where we first rename
x to a fresh variable y and then continue the substitution. The $d-statements state that the
substitution is not shadowed and y is fresh.

Notations (e.g., ¬ and ∧) play an important role in AML. Many proof rules such as
(Propagation∨) and (Singleton) directly use notations. However, Metamath has no
built-in support for defining notations. To define a notation, say ¬φ ≡ φ → ⊥, we need
to (1) declare a constant \not and add it to the pattern syntax; (2) define the equivalence
relation ¬φ ≡ φ→ ⊥; and (3) add a new case for \not to every metalevel assertions. While
(1) and (2) are reasonable, we want to avoid (3) because there are many metalevel assertions
and thus it creates duplication.

We implement an innovative and generic method that allows us to define any notations in
a compact way. Our method is to declare a new constant #Notation and use it to capture
the congruence relation of sugaring/de-sugaring. Using #Notation, it takes only three lines
to define the notation ¬φ ≡ φ→ ⊥:

1 $c \not $.
2 not-is-pattern $a #Pattern (\not ph0) $.
3 not-is-sugar $a #Notation (\not ph0) (\imp ph0 \bot) $.

where we declare the constant \not, add it to the pattern syntax, and then define the
sugaring/de-sugaring equivalence ¬φ ≡ φ → ⊥. We define all notations as above using
#Notation.

To make the above work, we need to state that #Notation is a congruence relation with
respect to the syntax of patterns and all the other metalevel assertions. Firstly, we state that
it is reflexive, symmetric, and transitive:

1 notation-reflexivity $a #Notation ph0 ph0 $.
2 ${ notation-symmetry.0 $e #Notation ph0 ph1 $.
3 notation-symmetry $a #Notation ph1 ph0 $. $}
4 ${ notation-transitivity.0 $e #Notation ph0 ph1 $.
5 notation-transitivity.1 $e #Notation ph1 ph2 $.
6 notation-transitivity $a #Notation ph0 ph2 $. $}

And the following is an example where we state that #Notation is a congruence with respect
to provability:

1 ${ notation-provability.0 $e #Notation ph0 ph1 $.
2 notation-provability.1 $e |- ph0 $.
3 notation-provability $a |- ph1 $. $}

171

This way, we only need a fixed number of statements that state that #Notation is a congruence,
making it more compact and less duplicated to define notations.

With metalevel assertions and notations, it is now straightforward to formalize the AML
proof rules. We have seen the formalization of (Modus Ponens) in Figure 7.1. In the
following, we formalize the fixpoint proof rule (Knaster-Tarski), whose premises use
capture-avoiding substitution:

1 ${ proof-rule-kt.0 $e #Substitution ph0 ph1 ph2 X $.
2 proof-rule-kt.1 $e |- (\imp ph0 ph2) $.
3 proof-rule-kt $a |- (\imp (\mu X ph1) ph2) $. $}

Note that these proof rules collectively define the provability predicate |-. We also add the
following axiom so that #Notation also preserves provability:

1 ${
2 notation-proof.0 $e |- ph0 $.
3 notation-proof.1 $e #Notation ph1 ph0 $.
4 notation-proof $a |- ph1 $.
5 $}

7.4.3 Entire source code

We present the entire 200-line Metamath formalization of AML.

1 $(MATCHING LOGIC PROOF CHECKER has 200 LOC $)
2 $c #Pattern #ElementVariable #SetVariable #Variable #Symbol $.
3 $v ph0 ph1 ph2 ph3 ph4 ph5 x y X Y xX yY sg0 $.
4 ph0-is-pattern $f #Pattern ph0 $. ph1-is-pattern $f #Pattern ph1 $.
5 ph2-is-pattern $f #Pattern ph2 $. ph3-is-pattern $f #Pattern ph3 $.
6 ph4-is-pattern $f #Pattern ph4 $. ph5-is-pattern $f #Pattern ph5 $.
7 x-is-element-var $f #ElementVariable x $.
8 y-is-element-var $f #ElementVariable y $.
9 X-is-element-var $f #SetVariable X $. Y-is-element-var $f #SetVariable Y $.

10 xX-is-var $f #Variable xX $. yY-is-var $f #Variable yY $.
11 sg0-is-symbol $f #Symbol sg0 $.
12 element-var-is-var $a #Variable x $. set-var-is-var $a #Variable X $.
13 var-is-pattern $a #Pattern xX $. symbol-is-pattern $a #Pattern sg0 $.
14 $c #Positive #Negative #Fresh #ApplicationContext #Substitution #Notation |- $.
15 $c \bot \imp \app \exists \mu () $. bot-is-pattern $a #Pattern \bot $.
16 imp-is-pattern $a #Pattern (\imp ph0 ph1) $.
17 app-is-pattern $a #Pattern (\app ph0 ph1) $.
18 exists-is-pattern $a #Pattern (\exists x ph0) $.
19 ${ mu-is-pattern.0 $e #Positive X ph0 $.
20 mu-is-pattern $a #Pattern (\mu X ph0) $. $}
21 positive-in-var $a #Positive xX yY $. positive-in-symbol $a #Positive xX sg0 $.
22 positive-in-bot $a #Positive xX \bot $.
23 ${ positive-in-imp.0 $e #Negative xX ph0 $.

172

24 positive-in-imp.1 $e #Positive xX ph1 $.
25 positive-in-imp $a #Positive xX (\imp ph0 ph1) $. $}
26 ${ positive-in-app.0 $e #Positive xX ph0 $.
27 positive-in-app.1 $e #Positive xX ph1 $.
28 positive-in-app $a #Positive xX (\app ph0 ph1) $. $}
29 ${ positive-in-exists.0 $e #Positive xX ph0 $.
30 positive-in-exists $a #Positive xX (\exists x ph0) $. $}
31 ${ positive-in-mu.0 $e #Positive xX ph0 $.
32 positive-in-mu $a #Positive xX (\mu X ph0) $. $}
33 ${ $d xX ph0 $. positive-disjoint $a #Positive xX ph0 $. $}
34 ${ $d xX yY $. negative-in-var $a #Negative xX yY $. $}
35 negative-in-symbol $a #Negative xX sg0 $.
36 negative-in-bot $a #Negative xX \bot $.
37 ${ negative-in-imp.0 $e #Positive xX ph0 $.
38 negative-in-imp.1 $e #Negative xX ph1 $.
39 negative-in-imp $a #Negative xX (\imp ph0 ph1) $. $}
40 ${ negative-in-app.0 $e #Negative xX ph0 $.
41 negative-in-app.1 $e #Negative xX ph1 $.
42 negative-in-app $a #Negative xX (\app ph0 ph1) $. $}
43 ${ negative-in-exists.0 $e #Negative xX ph0 $.
44 negative-in-exists $a #Negative xX (\exists x ph0) $. $}
45 ${ negative-in-mu.0 $e #Negative xX ph0 $.
46 negative-in-mu $a #Negative xX (\mu X ph0) $. $}
47 ${ $d xX ph0 $. negative-disjoint $a #Negative xX ph0 $. $}
48 ${ $d xX yY $. fresh-in-var $a #Fresh xX yY $. $}
49 fresh-in-symbol $a #Fresh xX sg0 $. fresh-in-bot $a #Fresh xX \bot $.
50 ${ fresh-in-imp.0 $e #Fresh xX ph0 $. fresh-in-imp.1 $e #Fresh xX ph1 $.
51 fresh-in-imp $a #Fresh xX (\imp ph0 ph1) $. $}
52 ${ fresh-in-app.0 $e #Fresh xX ph0 $. fresh-in-app.1 $e #Fresh xX ph1 $.
53 fresh-in-app $a #Fresh xX (\app ph0 ph1) $. $}
54 ${ $d xX x $. fresh-in-exists.0 $e #Fresh xX ph0 $.
55 fresh-in-exists $a #Fresh xX (\exists x ph0) $. $}
56 fresh-in-exists-shadowed $a #Fresh x (\exists x ph0) $.
57 ${ $d xX X $. fresh-in-mu.0 $e #Fresh xX ph0 $.
58 fresh-in-mu $a #Fresh xX (\mu X ph0) $. $}
59 fresh-in-mu-shadowed $a #Fresh X (\mu X ph0) $.
60 ${ $d xX ph0 $. fresh-disjoint $a #Fresh xX ph0 $. $}
61 ${ fresh-in-substitution.0 $e #Fresh xX ph1 $.
62 fresh-in-substitution.1 $e #Substitution ph2 ph0 ph1 xX $.
63 fresh-in-substitution $a #Fresh xX ph2 $. $}
64 ${ fresh-after-substitution.0 $e #Fresh xX ph0 $.
65 fresh-after-substitution.1 $e #Fresh xX ph1 $.
66 fresh-after-substitution.2 $e #Substitution ph2 ph0 ph1 yY $.
67 fresh-after-substitution $a #Fresh xX ph2 $. $}
68 substitution-var-same $a #Substitution ph0 xX ph0 xX $.
69 ${ $d xX yY $. substitution-var-diff $a #Substitution yY yY ph0 xX $. $}
70 substitution-symbol $a #Substitution sg0 sg0 ph0 xX $.
71 substitution-bot $a #Substitution \bot \bot ph0 xX $.
72 ${ substitution-imp.0 $e #Substitution ph1 ph3 ph0 xX $.
73 substitution-imp.1 $e #Substitution ph2 ph4 ph0 xX $.
74 substitution-imp

173

75 $a #Substitution (\imp ph1 ph2) (\imp ph3 ph4) ph0 xX $. $}
76 ${ substitution-app.0 $e #Substitution ph1 ph3 ph0 xX $.
77 substitution-app.1 $e #Substitution ph2 ph4 ph0 xX $.
78 substitution-app
79 $a #Substitution (\app ph1 ph2) (\app ph3 ph4) ph0 xX $. $}
80 substitution-exists-shadowed
81 $a #Substitution (\exists x ph1) (\exists x ph1) ph0 x $.
82 ${ $d xX x $. $d y ph0 $.
83 substitution-exists.0 $e #Substitution ph2 ph1 y x $.
84 substitution-exists.1 $e #Substitution ph3 ph2 ph0 xX $.
85 substitution-exists
86 $a #Substitution (\exists y ph3) (\exists x ph1) ph0 xX $. $}
87 substitution-mu-shadowed $a #Substitution (\mu X ph1) (\mu X ph1) ph0 X $.
88 ${ $d xX X $. $d Y ph0 $.
89 substitution-mu.0 $e #Substitution ph2 ph1 Y X $.
90 substitution-mu.1 $e #Substitution ph3 ph2 ph0 xX $.
91 substitution-mu $a #Substitution (\mu Y ph3) (\mu X ph1) ph0 xX $. $}
92 substitution-identity $a #Substitution ph0 ph0 xX xX $.
93 ${ yY-free-in-ph0 $e #Fresh yY ph0 $.
94 ph1-definition $e #Substitution ph1 ph0 yY xX $.
95 ${ substitution-fold.0 $e #Substitution ph2 ph1 ph3 yY $.
96 substitution-fold $a #Substitution ph2 ph0 ph3 xX $. $}
97 ${ substitution-unfold.0 $e #Substitution ph2 ph0 ph3 xX $.
98 substitution-unfold $a #Substitution ph2 ph1 ph3 yY $. $} $}
99 ${ substitution-inverse.0 $e #Fresh xX ph0 $.

100 substitution-inverse.1 $e #Substitution ph1 ph0 xX yY $.
101 substitution-inverse $a #Substitution ph0 ph1 yY xX $. $}
102 ${ substitution-fresh.0 $e #Fresh xX ph0 $.
103 substitution-fresh $a #Substitution ph0 ph0 ph1 xX $. $}
104 application-context-var $a #ApplicationContext xX xX $.
105 ${ $d xX ph1 $.
106 application-context-app-left.0 $e #ApplicationContext xX ph0 $.
107 application-context-app-left
108 $a #ApplicationContext xX (\app ph0 ph1) $. $}
109 ${ $d xX ph0 $.
110 application-context-app-right.0 $e #ApplicationContext xX ph1 $.
111 application-context-app-right
112 $a #ApplicationContext xX (\app ph0 ph1) $. $}
113 notation-reflexivity $a #Notation ph0 ph0 $.
114 ${ notation-symmetry.0 $e #Notation ph0 ph1 $.
115 notation-symmetry $a #Notation ph1 ph0 $. $}
116 ${ notation-transitivity.0 $e #Notation ph0 ph1 $.
117 notation-transitivity.1 $e #Notation ph1 ph2 $.
118 notation-transitivity $a #Notation ph0 ph2 $. $}
119 ${ notation-positive.0 $e #Positive xX ph0 $.
120 notation-positive.1 $e #Notation ph1 ph0 $.
121 notation-positive $a #Positive xX ph1 $. $}
122 ${ notation-negative.0 $e #Negative xX ph0 $.
123 notation-negative.1 $e #Notation ph1 ph0 $.
124 notation-negative $a #Negative xX ph1 $. $}
125 ${ notation-fresh.0 $e #Fresh xX ph0 $.

174

126 notation-fresh.1 $e #Notation ph1 ph0 $.
127 notation-fresh $a #Fresh xX ph1 $. $}
128 ${ notation-substitution.0 $e #Substitution ph0 ph1 ph2 xX $.
129 notation-substitution.1 $e #Notation ph3 ph0 $.
130 notation-substitution.2 $e #Notation ph4 ph1 $.
131 notation-substitution.3 $e #Notation ph5 ph2 $.
132 notation-substitution $a #Substitution ph3 ph4 ph5 xX $. $}
133 ${ notation-application-context.0 $e #ApplicationContext xX ph0 $.
134 notation-application-context.1 $e #Notation ph1 ph0 $.
135 notation-application-context $a #ApplicationContext xX ph1 $. $}
136 ${ notation-proof.0 $e |- ph0 $. notation-proof.1 $e #Notation ph1 ph0 $.
137 notation-proof $a |- ph1 $. $}
138 ${ notation-imp.0 $e #Notation ph0 ph2 $.
139 notation-imp.1 $e #Notation ph1 ph3 $.
140 notation-imp $a #Notation (\imp ph0 ph1) (\imp ph2 ph3) $. $}
141 ${ notation-app.0 $e #Notation ph0 ph2 $.
142 notation-app.1 $e #Notation ph1 ph3 $.
143 notation-app $a #Notation (\app ph0 ph1) (\app ph2 ph3) $. $}
144 ${ notation-exists.0 $e #Notation ph0 ph1 $.
145 notation-exists $a #Notation (\exists x ph0) (\exists x ph1) $. $}
146 ${ notation-mu.0 $e #Notation ph0 ph1 $.
147 notation-mu $a #Notation (\mu X ph0) (\mu X ph1) $. $}
148 $c \not $. not-is-pattern $a #Pattern (\not ph0) $.
149 not-is-sugar $a #Notation (\not ph0) (\imp ph0 \bot) $.
150 $c \or $. or-is-pattern $a #Pattern (\or ph0 ph1) $.
151 or-is-sugar $a #Notation (\or ph0 ph1) (\imp (\not ph0) ph1) $.
152 $c \and $. and-is-pattern $a #Pattern (\and ph0 ph1) $.
153 and-is-sugar
154 $a #Notation (\and ph0 ph1) (\not (\or (\not ph0) (\not ph1))) $.
155 proof-rule-prop-1 $a |- (\imp ph0 (\imp ph1 ph0)) $.
156 proof-rule-prop-2 $a |- (\imp (\imp ph0 (\imp ph1 ph2))
157 (\imp (\imp ph0 ph1) (\imp ph0 ph2))) $.
158 proof-rule-prop-3 $a |- (\imp (\imp (\imp ph0 \bot) \bot) ph0) $.
159 ${ proof-rule-mp.0 $e |- (\imp ph0 ph1) $.
160 proof-rule-mp.1 $e |- ph0 $.
161 proof-rule-mp $a |- ph1 $. $}
162 ${ proof-rule-exists.0 $e #Substitution ph0 ph1 y x $.
163 proof-rule-exists $a |- (\imp ph0 (\exists x ph1)) $. $}
164 ${ proof-rule-gen.0 $e |- (\imp ph0 ph1) $.
165 proof-rule-gen.1 $e #Fresh x ph1 $.
166 proof-rule-gen $a |- (\imp (\exists x ph0) ph1) $. $}
167 ${ proof-rule-propagation-bot.0 $e #ApplicationContext xX ph0 $.
168 proof-rule-propagation-bot.1 $e #Substitution ph1 ph0 \bot xX $.
169 proof-rule-propagation-bot $a |- (\imp ph1 \bot) $. $}
170 ${ proof-rule-propagation-or.0 $e #ApplicationContext xX ph0 $.
171 proof-rule-propagation-or.1 $e #Substitution ph1 ph0 (\or ph4 ph5) xX $.
172 proof-rule-propagation-or.2 $e #Substitution ph2 ph0 ph4 xX $.
173 proof-rule-propagation-or.3 $e #Substitution ph3 ph0 ph5 xX $.
174 proof-rule-propagation-or $a |- (\imp ph1 (\or ph2 ph3)) $. $}
175 ${ proof-rule-propagation-exists.0 $e #ApplicationContext xX ph0 $.
176 proof-rule-propagation-exists.1

175

177 $e #Substitution ph1 ph0 (\exists y ph3) xX $.
178 proof-rule-propagation-exists.2 $e #Substitution ph2 ph0 ph3 xX $.
179 proof-rule-propagation-exists.3 $e #Fresh y ph0 $.
180 proof-rule-propagation-exists $a |- (\imp ph1 (\exists y ph2)) $. $}
181 ${ proof-rule-frame.0 $e #ApplicationContext xX ph0 $.
182 proof-rule-frame.1 $e #Substitution ph1 ph0 ph3 xX $.
183 proof-rule-frame.2 $e #Substitution ph2 ph0 ph4 xX $.
184 proof-rule-frame.3 $e |- (\imp ph3 ph4) $.
185 proof-rule-frame $a |- (\imp ph1 ph2) $. $}
186 ${ proof-rule-prefixpoint.0 $e #Substitution ph0 ph1 (\mu X ph1) X $.
187 proof-rule-prefixpoint $a |- (\imp ph0 (\mu X ph1)) $. $}
188 ${ proof-rule-kt.0 $e #Substitution ph0 ph1 ph2 X $.
189 proof-rule-kt.1 $e |- (\imp ph0 ph2) $.
190 proof-rule-kt $a |- (\imp (\mu X ph1) ph2) $. $}
191 ${ proof-rule-set-var-substitution.0 $e #Substitution ph0 ph1 ph2 X $.
192 proof-rule-set-var-substitution.1 $e |- ph1 $.
193 proof-rule-set-var-substitution $a |- ph0 $. $}
194 proof-rule-existence $a |- (\exists x x) $.
195 ${ proof-rule-singleton.0 $e #ApplicationContext xX ph0 $.
196 proof-rule-singleton.1 $e #ApplicationContext yY ph1 $.
197 proof-rule-singleton.2 $e #Substitution ph3 ph0 (\and x ph2) xX $.
198 proof-rule-singleton.3
199 $e #Substitution ph4 ph1 (\and x (\not ph2)) yY $.
200 proof-rule-singleton $a |- (\not (\and ph3 ph4)) $. $}

176

Chapter 8: PROOF-CERTIFYING PROGRAM EXECUTION

Our vision is that of an ideal language framework, as shown in Figure 1.1, where program-
ming language designers only need to write formal definitions of their languages, and all
language tools are automatically generated by the framework. The K framework, as discussed
in Section 2.15, pursues the above vision by providing a simple and intuitive front-end
language (i.e., a meta-language) for defining programming languages. K also provides a set of
language-agnostic (also called language-independent or language-parametric) tools, including
a parser, an interpreter, a deductive verifier, and a program equivalence checker [3, 4]. These
tools can be instantiated by the formal semantics of any given programming language.

What is missing in K is the ability to generate machine-checkable correctness certificates.
Currently, K has over 500,000 lines of code written in 4 programming languages, with new
code committed to the code base on a weekly basis. The K code base includes complex data
structures, algorithms, optimizations, and heuristics to support the various features that
are needed for defining the formal semantics of programming languages. For example, K

uses BNF grammars for defining formal language syntax, constructors and terms for defining
computation configurations, rewrite rules for defining operational semantics, and strictness
and contexts for defining evaluation orders. All the above make it challenging to formally
verify the correctness of K.

The objective of this chapter and Chapter 9 is to propose a practical approach to establishing
the correctness of K via proof generation. The idea is similar to translation validation [135],
which was proposed to approach the verification of translators, such as compilers. Instead
of proving that a compiler produces the correct code for all source code, it is proved that
each individual compilation process is correct. In the context of K, it means to prove the
correctness of every language task that K does. Specifically, for any programming language L
defined in K, we translate its formal semantics into an AML theory ΓL. For any computation
and formal analysis task (e.g., executing a program or verifying the functional correctness of
a program) carried out using K, we encode its correctness as an AML pattern φtask . Then,
the correctness of K is reduced to proving the following AML theorem:

ΓL ⊢ φtask (8.1)

Proof generation is the process of generating a formal proof for the above theorem, for the
given L and φtask . The outcome of proof generation is a proof object for ΓL ⊢ φtask that can
be directly checked by the AML proof checker in Section 7.4. This way, the correctness of K

is reduced to the correctness of proof checking.

177

In this chapter we focus on proof generation for program execution. For any execution
trace, we generate a corresponding AML proof object that justifies its correctness. Since
the correctness certificate is generated for each execution trace, we achieve proof-certifying
program execution. In Chapter 9, we apply the same idea to achieve proof-certifying formal
verification.

Much of the content in this chapter comes from [136].

8.1 OVERVIEW

Our approach to proof-certifying program execution consists of four components: (1) AML
as a logical foundation of K; (2) proof hints; (3) the proof generation procedures; and (4) the
AML proof checker in Section 7.4. We give an overview of these components below.

AML serves as the logical foundation of our proof generation process and also of K. By
that, we mean that any programming language L defined in K is translated to an AML
theory ΓL, which, roughly speaking, consists of symbols that represent the formal syntax
of L and axioms that specify its formal semantics. Program execution is specified by the
following theorem:

ΓL ⊢ φinit ⇒exec φfinal (8.2)

where φinit and φfinal are patterns representing the initial and final states, respectively. The
operation ⇒exec is defined as a notation, i.e., φinit ⇒exec φfinal ≡ φinit → ⋄φfinal , where
⋄φfinal ≡ µX .φfinal ∨ •X is the “eventually” operator in Section 5.7.

A proof hint consists of the necessary information that K should give to the proof generation
procedures to help generate proof objects. For program execution, a proof hint includes the
following information:

1. the complete execution trace φ0, φ1, . . . , φn, where φ0 ≡ φinit and φn ≡ φfinal ; we call
φ0, . . . , φn the intermediate snapshots ;

2. for each step from φi to φi+1, the rewriting information that consists of the rewrite/se-
mantic rule φlhs ⇒exec φrhs that is applied, and the corresponding substitution θ such
that φlhsθ ≡ φi.

Given a proof hint, the proof generation procedure for program execution calls a sub-
procedure to generate the proof objects for all the one-step execution steps, i.e., ΓL ⊢
φi ⇒exec φi+1 for all i. For each of the sub-goal, we generate its proof object by further
decomposing it into applying a rewrite rule and applying simplification rules, which can
be further decomposed into applying substitution, equational reasoning, etc. Once all the

178

1 module TWO-COUNTERS
2 imports INT
3 syntax State ::= "<" Int "," Int ">"
4 configuration <T> $PGM:State </T>
5 rule <M, N> => <M -Int 1, N +Int M>
6 requires M >Int 0
7 endmodule

Figure 8.1: Running Example TWO-COUNTERS.

sub-goals are proved, we put together all the generated sub-proof objects and output the
final proof object. The generated proof objects can be automatically checked by the AML
proof checker in Section 7.4.

To sum up, our approach to proof-certifying program execution is based on K and its
logical foundation AML. Programming language semantics defined in K are translated to
AML theories. Program execution can be formalized as AML theorems, whose proofs are
automatically generated and checked. The key characteristics of our approach are that:

1. it is faithful to the actual implementation of K because proof certificates are generated
from proof hints, which include all the intermediate snapshots and the actual rewriting
information, provided by K;

2. it is practical because correctness certificates are generated for each execution case on
a case-by-case basis, avoiding the verification of the entire K;

3. it is trustworthy because the correctness certificates can automatically checked by a
proof checker.

8.2 A RUNNING EXAMPLE

We use a simple example as shown in Figure 8.1 to explain our proof generation procedures.
The semantics TWO-COUNTERS defines a state machine with two counters. A computation
configurations is a pair ⟨m,n⟩ and its semantics is given by the following rewrite rule:

⟨m,n⟩ ⇒ ⟨m− 1, n+m⟩ if m > 0 (8.3)

In each execution step, TWO-COUNTERS adds n by m and reduces m by 1. Starting from the
initial state ⟨m, 0⟩, TWO-COUNTERS carries out m execution steps and terminates at the final
state ⟨0,m(m+ 1)/2⟩, where m(m+ 1)/2 = m+ (m− 1) + · · ·+ 1. The following shows a

179

concrete program execution trace of TWO-COUNTERS starting from the initial state ⟨100, 0⟩:

⟨100, 0⟩, ⟨99, 100⟩, ⟨98, 199⟩, . . . , ⟨1, 5049⟩, ⟨0, 5050⟩ (8.4)

To make K generate the above execution trace, we need to follow these steps:

1. Prepare the initial state ⟨100, 0⟩ in a source file, say 100.two-counters.

2. Compile TWO-COUNTERS into an AML theory (discussed in Section 8.3);

3. Use the K execution tool krun and pass the source file to it:

$ krun 100.two-counters –-depth N

The option –-depth N tells K to execute for N steps and output the corresponding intermediate
snapshot. By letting N be 1, 2, . . . , we collect all the intermediate snapshots in Equation (8.4).

The proof hint of Equation (8.4) includes the rewriting information for each execution step,
i.e., the rewrite rule that is applied and the corresponding substitution. In TWO-COUNTERS,
there is only one rewrite rule, and the substitution can be easily obtained by pattern matching,
where we simply match the snapshot with the left-hand side of the rewrite rule.

Note that we regard K as a “black box”. We are not interested in its complex internal
algorithms. Instead, we hide such complexity by letting K generate proof hints. This way, we
create a separation of concerns between K and proof generation. K can aim at optimizing the
performance of the auto-generated language tools, without making proof generation more
complex.

8.3 TRANSLATING K TO AML

To compile programming languages semantics in K to AML theories, we use the existing K

compilation tool kompile. The tool kompile translates a K semantics into an AML theory
written in a formal language called Kore, which can be regarded as AML extended with the
theories of equality, sorts, and rewriting. To formalize the compiled Kore definitions in proof
objects, we first formalize the theories of equality, sorts, and rewriting and then translate
Kore definitions into AML axioms, as shown in Figure 8.2.

Phase-1 translation is from K to Kore, where we pass two-counters.k to kompile:
$ kompile two-counters.k

The result is a compiled Kore definition two-counters.kore. Figure 8.2 shows an example
auto-generated Kore axiom that corresponds to the rewrite rule in Equation (8.3). As we can

180

Figure 8.2: Two-Phase Translation from K to AML via Kore

see, Kore is at a much lower-level than K, where the programming language concrete syntax
and K’s front-end syntax are parsed and replaced by the abstract syntax trees, represented
by the constructor terms.

Phase-2 translation is from Kore to AML. We develop an automatic encoder that translates
Kore syntax into AML patterns. Since Kore is essentially the theory of equality, sorts, and
rewriting, we define the syntactic constructs of the Kore language as AML notation and
theories, using the mechanisms introduced in Section 7.4.

8.4 GENERATING PROOFS FOR ONE-STEP EXECUTIONS

The key step in our approach is to generate proof objects for one-step executions. There
proof objects are then put together to build the final proof objects for an entire execution
trace using the transitivity of the rewriting relation. Thus, we focus on the proof generation
procedures for one-step executions.

8.4.1 Problem formulation

Consider the following K definition that consists of K conditional rewrite rules:

S = {tk ∧ pk ⇒exec sk | k = 1, 2, . . . , K} (8.5)

where tk and sk are the left- and right-hand sides of the rewrite rule, respectively, and pk

is the rewriting condition. Consider an execution trace φ0, φ1, . . . , φn where φ0, . . . , φn are

181

intermediate snapshots. We let K generate the following proof hint:

Θ ≡ (k0, θ0), . . . , (kn−1, θn−1) (8.6)

where for each 0 ≤ i < n, ki denotes the rewrite rule that is applied on φi (1 ≤ ki ≤ K) and
θi denotes the corresponding substitution such that tkiθi = φi. For example, the rewrite rule
of TWO-COUNTERS, restated below:

⟨m,n⟩ ⇒exec ⟨m− 1, n+m⟩ if m > 0 (8.7)

has the left-hand side tk ≡ ⟨m,n⟩, the right-hand side sk ≡ ⟨m− 1, n+m⟩, and the condition
pk ≡ m ≥ 0. Note that the right-hand side pattern sk contains the arithmetic operations “+”
and “−” that can be further evaluated to a value, if concrete instances of the variables m and
n are given. Generally speaking, the right-hand side of a rewrite rule may include (built-in
or user-defined) functions that are not constructors and thus can be further evaluated. We
call such evaluation process a simplification. Therefore, the sub-proof goals for one-step
executions are as follows:

ΓL ⊢ φ0 ⇒ sk0θ0 // by applying tk0 ∧ pk0 ⇒ sk0 using θ0 (8.8)

ΓL ⊢ sk0θ0 = φ1 // by simplifying sk0θ0 (8.9)

· · · (8.10)

ΓL ⊢ φn−1 ⇒ skn−1θn−1 // by applying tkn−1 ∧ pkn−1 ⇒ skn−1 using θn−1 (8.11)

ΓL ⊢ skn−1θn−1 = φn // by simplifying skn−1θn−1 (8.12)

As we can see, there are two types of proof goals: one for applying rewrite rules and one for
applying simplification rules. We discuss their proof generation procedures in the following.

8.4.2 Applying rewrite rules

The main steps in proving ΓL ⊢ φi ⇒ skiθi are to instantiate the rewrite rule tki ∧pki ⇒ ski
by the substitution

θi = [c1/x1, . . . , cm/xm] (8.13)

in the proof hint, and then show that the (instantiated) rewriting condition pkiθi holds. Here,
x1, . . . , xm are the variables that occur in the rewrite rule and c1, . . . , cm are terms by which
we instantiate the variables. For (1), we need to first prove the following lemma, called
(Functional Substitution) in Figure 2.11, which states that ∀-quantification can be

182

instantiated by functional patterns:

∀x⃗ . tk1 ∧ pki ⇒ ski ∃y1 . φ1 = y1 · · · ∃ym . φm = ym
y1, . . . , ym fresh

tkiθi ∧ pkiθi ⇒ skiθi (8.14)

Intuitively, the premise ∃y1 . φ1 = y1 states that φ1 is a functional pattern because it equals to
some element y1. If Θ in Equation (8.6) is the correct proof hint, θi is the correct substitution
and thus tkiθi ≡ φi. Therefore, to prove the original proof goal for one-step execution, i.e.
ΓL ⊢ φi ⇒ skiθi, we only need to prove that ΓL ⊢ pkiθi, i.e., the rewriting condition pki holds
under θi. This is done by simplifying pkiθi to ⊤, discussed below.

8.4.3 Applying simplification rules

K carries out simplification exhaustively before trying to apply a rewrite rule, and simplifi-
cations are done by applying (oriented) equations. Generally speaking, let s be a term and
p→ t = t′ be a (conditional) equation, we say that s can be simplified w.r.t. p→ t = t′, if
there is a sub-pattern s0 of s (written s ≡ C[s0] where C is a context) and a substitution θ
such that s0 = tθ and pθ holds. The resulting simplified pattern is denoted C[t′θ]. Therefore,
a proof object of the above simplification consists of two proofs: ΓL ⊢ s = C[t′θ] and ΓL ⊢ pθ.
The latter can be handled recursively, by simplifying pθ to ⊤, so we only need to consider
the former.

The main steps of proving ΓL ⊢ s = C[t′θ] are the following:

1. to find C, s0, θ, and t = t′ in ΓL such that s ≡ C[s0] and s0 = tθ; in other words, s can
be simplified w.r.t. t = t′ at the sub-pattern s0;

2. to prove ΓL ⊢ s0 = t′θ by instantiating t = t′ using the substitution θ, using the same
(Functional Substitution) lemma as above;

3. to prove ΓL ⊢ C[s0] = C[t′] using the transitivity of equality.

Finally, we repeat the above one-step simplifications until no sub-patterns can be simplified
further. The resulting proof objects are then put together by the transitivity of equality.

8.5 EVALUATION

In this section, we evaluate the performance of our implementation and discuss the
experiment results, summarized in Table 8.1. We use two sets of benchmarks. The first is

183

Table 8.1: Proof Generation and Proof Checking Performance: Program Execution

Program Proof Generation Proof Checking Proof Size

sem rewrite total logic task total kLOC MB

10.two-counters 5.95 12.19 18.13 3.26 0.19 3.44 963.8 77
20.two-counters 6.31 24.33 30.65 3.41 0.38 3.79 1036.5 83
50.two-counters 6.48 73.09 79.57 3.52 0.98 4.50 1259.2 100
100.two-counters 6.75 177.55 184.30 3.50 2.10 5.60 1635.6 130
add8 11.59 153.34 164.92 3.40 3.09 6.48 1986.8 159
factorial 3.84 34.63 38.46 3.57 0.90 4.47 1217.9 97
fibonacci 4.50 12.51 17.01 3.44 0.21 3.65 971.7 77
benchexpr 8.41 53.22 61.62 3.61 0.80 4.41 1191.3 95
benchsym 8.79 47.71 56.50 3.53 0.72 4.25 1163.4 93
benchtree 8.80 26.86 35.66 3.47 0.32 3.80 1021.5 81
langton 5.26 23.07 28.33 3.46 0.40 3.86 1048.0 84
mul8 14.39 279.97 294.36 3.48 7.18 10.66 3499.2 280
revelt 4.98 51.83 56.81 3.35 1.10 4.45 1317.4 105
revnat 4.81 123.44 128.25 3.37 5.28 8.65 2691.9 215
tautologyhard 5.16 400.89 406.05 3.55 14.50 18.04 6884.7 550

our running example TWO-COUNTERS with different inputs (10, 20, 50, and 100). The second
is REC [137], which is a popular performance benchmark for rewriting engines. We evaluate
both the performance of proof generation and that of proof checking. Our implementation
can be found in [138]. The main takeaways of our experiments are the following:

1. Proof checking is efficient and takes a few seconds; in particular, the task-specific
checking time is often less than one second (see the “task” column in Table 8.1).

2. Proof generation is slower and takes several minutes.

3. Proof objects are huge, often of millions LOC (wrapped at 80 characters).

We measure the proof generation time as the time to generate complete proof objects
following the proof generation procedures in Section 8.4, from the compiled Kore definitions
and proof hints. As shown in Table 8.1, proof generation takes around 17–406 seconds
on the benchmarks, and the average is 107 seconds. Proof generation can be divided into
two parts: that of the language semantics ΓL and that of the (one-step and multi-step)
program executions. Both parts are shown in Table 8.1 under columns “sem” and “rewrite”,
respectively. For the same language, the time to generate language semantics ΓL is the same
(up to experimental error). The time for executions is linear to the number of steps.

184

Proof checking is efficient and takes a few seconds on our benchmarks. We can divide the
proof checking time into two parts: that of the logical foundation and that of the actual
program execution tasks. Both parts are shown in Table 8.1 under columns “logic” and
“task”. The “logic” part includes formalization of AML and its basic theories, and thus is
fixed for any programming language and program and has the same proof checking time (up
to experimental error). The “task” part includes the language semantics and proof objects
for the one-step and multi-step executions. Therefore, the time to check the “task” part is a
more valuable and realistic measure, and according to our experiments, it is often less than 1
second, making it acceptable in practice.

Note that the time for “task-specific” proof checking is roughly the same as the time for
K to parse and execute the program. There is no significant performance difference on our
benchmarks between running the programs directly in K and checking the proof objects.
Furthermore, there exists much potential to optimize the performance of proof checking and
make it even faster than program execution. For example, proof checking is an embarrassingly
parallel problem, because each meta-theorems can be proof-checked entirely independently.
We can thus further reduce the proof checking time by running multiple instances of the
proof checker in parallel.

185

Chapter 9: PROOF-CERTIFYING FORMAL VERIFICATION

We push the idea in Chapter 8 further and apply it to achieve proof-certifying formal
verification. We first review the verification algorithm (Algorithm 9.1) that automates the
reachability proof rules in Figure 2.12 in Section 9.1. Then, we describe the proof generation
procedures for symbolic execution (Section 9.2), pattern subsumption (Section 9.3), and
coinductive reasoning (Section 9.4). We discuss the interesting implementation details in
Section 9.6 and show evaluation results in Section 9.5.

Much of the content in this chapter comes from [139].

9.1 OVERVIEW

We show the language-agnostic verification algorithm of K in Algorithm 9.1, which is an
optimized implementation of the reachability proof rules in Figure 2.12. The input R is a set
of reachability claims to be verified, including the necessary invariant claims. The algorithm
consists of two procedures: proveAllClaims and proveOneClaim. The first calls the latter
on every input claim. The procedure proveOneClaim starts by checking the subsumption
ΓL ⊢ φ→ φ′. If it holds, then the claim φ⇒reach φ

′ is trivially true. If the direct subsumption
is false, we perform symbolic execution for one step from φ to get a set Q of all its successors.
Both successors (Line 8) and successorsR (Line 12) calculate all the successors of a given
configuration. successors uses only the formal semantics in ΓL while successorsR uses
both the semantic rules and the claims in R. This is sound because at least one real semantic
step has been made in Line 8. If Q ̸= ∅, the algorithm nondeterministically chooses a
frontier pattern ψfront from Q and checks whether ψfront satisfies φ′. If yes, the verification
succeeds (Line 11). Otherwise, the algorithm symbolically executes ψfront and continues with
its successors (Line 12), following both the semantic rules and the claims in R. This is sound
because in Line 8, before the while loop, we have computed the successors of φ using only
the semantic rules. Immediately after that, when we entered the loop for the first time, we
chose one successor of φ, say φs (Line 10). Therefore, we have ΓL ⊢ φ⇒+

reach φs. Since at
least one execution step has been made, the (Transitivity) rule in Figure 2.12 moves all
the circularity claims (i.e., the claims in R) to the axiom set so they can be used as semantic
axioms in computing further successors (Line 12).

In this work we only consider verifying reachability claims on one path, called one-path
reachability. The procedure proveOneClaim nondeterministically chooses a frontier pattern
ψfront from all the possible successors in Q (see Line 10), which amounts to looking for

186

Algorithm 9.1: Algorithm for Proving One-Path Reachability Claims
1 procedure proveAllClaims(R)
2 foreach φ⇒reach φ

′ ∈ R do
3 if proveOneClaim(R, φ⇒reach φ

′) = failure then return failure;

4 return success;

5 // a nondeterministic algorithm for proving one reachability claim
6 procedure proveOneClaim(R, φ⇒reach φ

′)
7 if ΓL ⊢ φ→ φ′ then return success;
8 Q :− successors(φ);
9 while Q ̸= ∅ do

10 ψfront :− choose(Q); // a nondeterministic choice
11 if ΓL ⊢ ψfront → φ′ then return success;
12 else Q :− successorsR(ψfront);

13 return failure;

the one execution path that satisfies the reachability claim. Therefore, proveOneClaim is
successful if there exists a successful run, in which case a particular execution trace is found
as the witness of the claim being verified. Based on this execution trace, we can generate
an AML proof object. On the other hand, proveOneClaim fails if there is no successful
run. A deterministic implementation of proveOneClaim will require backtracking for all
the nondeterministic choice(s) in Line 10. In this work we consider proof generation for
successful verification runs so we always assume that there is a successful run of Line 10.
Finally, the procedure proveAllClaims calls proveOneClaim on all claims in R and the
entire verification is successful if proveAllClaims is successful.

Our goal is to generate proof objects for Algorithm 9.1. For clarity, we divide it into three
proof generation procedures:

1. Generating proofs for symbolic execution (corresponding to Lines 8 and 12);

2. Generating proofs for pattern subsumption (corresponding to Line 11);

3. Generating proofs for coinductive reasoning (corresponding to the use of R in Line 12).

We discuss these proof generation procedures in the following.

187

9.2 GENERATING PROOFS FOR SYMBOLIC EXECUTION

We use ΓL to denote the AML theory of the formal semantics of a language L. Consider
the following K language definition, which consists of K (conditional) rewrite rules:

{lhsk ∧ qk ⇒1
exec rhsk | k = 1, 2, . . . , K} ⊆ ΓL (9.1)

where lhsk represents the left-hand side of the rewrite rule, rhsk represents the right-hand side,
and qk denotes the rewriting condition. Unconditional rules can be regarded as conditional
rules where qk is ⊤. The notation ⇒1

exec stands for one-step execution, defined as φ1 ⇒1
exec

φ2 ≡ φ1 → •φ2.
In symbolic execution, program configurations often appear with their corresponding

path conditions. We represent them as t ∧ p, where t is a configuration and p is a logical
constraint/predicate over the free variables of t. We call such patterns constrained terms.
Constrained terms are AML patterns.

Unlike concrete execution, symbolic execution can create branches. Therefore, we formulate
proof generation for symbolic execution as follows. The input is an initial constrained term
t ∧ p and a list of final constrained terms t1 ∧ p1, . . . , tn ∧ pn, which are returned by K as the
result(s) of symbolic executing t under the condition p. Each ti ∧ pi represents one possible
execution trace. Our goal is to generate a proof for the following goal:

ΓL ⊢ t ∧ p⇒exec (t1 ∧ p1) ∨ · · · ∨ (tn ∧ pn) (Goal)

In other words, here we are certifying the correctness of the successors (and successorsR)
methods used by Algorithm 9.1, by proving that ΓL ⊢ φ⇒exec successors(φ), which further
implies ΓL ⊢ φ⇒reach successors(φ).

To help generating the proof of (Goal), we instrument K to output proof hints, which
include rewriting details such as the semantic rules that are applied and the substitutions
that are used. Formally, the proof hint for the j-th rewrite step consists of:

1. a constrained term thintj ∧ phintj that represents the configuration before step j;

2. lj constrained terms thintj,1 ∧ phintj,1 , .., t
hint
j,lj
∧ phintj,lj

that represent the configurations after
step j, where for each 1 ≤ l ≤ lj, we also annotate it with an index 1 ≤ kj,l ≤ K that
refers to the kj,l-th semantic rule in ΓL and a substitution θj,l;

3. an (optional) constrained term tremj ∧ premj , where prem
j ≡ phint

j ∧ ¬
(
phint
j,1 ∨ · · · ∨ phint

j,lj

)
,

called the remainder of step j, representing the part/fragment of the original configura-
tion that “gets stuck”.

188

Intuitively, each constrained term thintj,l ∧ phintj,l represents one execution branch, obtained by
applying the kj,l-th semantic rule (i.e., lhskj,l ∧ qkj,l ⇒1

exec rhskj,l) using substitution θj,l. The
remainder tremj ∧ premj denotes the branch where no semantic rules can be applied further and
thus the execution gets stuck. Note that thintj and tremj may not be syntactically identical,
even if no execution has been made. This is because the path condition premj is stronger than
the original condition phintj . With this stronger path condition, K can simplify thintj further to
tremj .

From the above proof hint, we can generate the proof for one symbolic execution step. For
example, the following specifies the j-th symbolic execution step:

ΓL⊢
(
thintj ∧ phintj

)
⇒exec

(
thintj,1 ∧ phintj,1

)
∨. . .∨

(
thintj,lj
∧ phintj,lj

)
∨
(
tremj ∧ premj

)
(Stepj)

Recall that ⇒exec is the reflexive and transitive closure of the one-step execution relation,
so the remainder configuration can appear at the right-hand side even if no execution step
has been made on that branch. To prove (Stepj), we need to prove the correctness of each
execution branch, for 1 ≤ l ≤ lj:

ΓL ⊢
(
thintj ∧ phintj,l

)
⇒1

exec

(
thintj,l ∧ phintj,l

)
(Branchj,l)

And for the remainder branch, we need to prove

ΓL ⊢
(
thintj ∧ premj

)
→
(
tremj ∧ premj

)
(Remainderj)

Therefore, the proof goal (Goal) for symbolic execution is proved in three phases:

1. (Phase 1) Prove (Branchj,l) and (Remainderj) for each step j and branch 1 ≤ l ≤ lj.

2. (Phase 2) Combine (Branchj,l) and (Remainderj) to obtain a proof of (Stepj).

3. (Phase 3) Combine (Stepj) to obtain a proof of (Goal).

We explain these phases in the following. Note that we need many lemmas about the program
execution relation “⇒exec” when we generate proof objects for symbolic execution. The
most important and relevant lemmas are stated explicitly in this section. In total, 196 new
lemmas are formally encoded, and their proofs have been completely worked out based on the
Metamath formalization of the proof system [136, 138]. These lemmas can be easily reused
for future development.

189

9.2.1 Phase 1: Proving (Branchj,l) and (Remainderj)

Recall that (Branchj,l) is obtained by applying the kj,l-th semantic rule from the language
semantics (where 1 ≤ kj,l ≤ K):

lhskj,l ∧ qkj,l ⇒1
exec rhskj,l (9.2)

From the proof hint, we know that the corresponding substitution is θj,l. Therefore, we
instantiate the semantic rule using θj,l and obtain the following result

ΓL ⊢ lhskj,lθj,l ∧ qkj,lθj,l ⇒1
exec rhskj,lθj,l (9.3)

where we use tθ to denote the result of applying the substitution θ to t. Note that qkj,lθj,l
is a predicate on the free variables of Equation (9.3) that holds on the left-hand side, by
propositional reasoning, it also holds on the right-hand side. Therefore, we prove that:

ΓL ⊢ lhskj,lθj,l ∧ qkj,lθj,l ⇒1
exec rhskj,lθj,l ∧ qkj,lθj,l (9.4)

To proceed, we need the following lemma:

Lemma 9.1 (⇒1
exec Consequence).

ΓL ⊢ φ→ φ′ ΓL ⊢ φ′ ⇒1
exec ψ

′ ΓL ⊢ ψ′ → ψ

ΓL ⊢ φ⇒1
exec ψ (9.5)

Intuitively, Lemma 9.1 allows us to strengthen the left-hand side and/or weaken the
right-hand side of an execution relation. Using Lemma 9.1, and by comparing our proof
goal (Branchj,l) with Equation (9.4), we only need to prove the following two implications
between constrained terms, which we call subsumptions :

ΓL ⊢
(
thintj ∧ phintj,l

)
→
(
lhskj,lθkj,l ∧ qkj,lθkj,l

)︸ ︷︷ ︸
left-hand side strengthening

ΓL ⊢
(
rhskj,lθkj,l ∧ qkj,lθkj,l

)
→
(
thintj,l ∧ phintj,l

)︸ ︷︷ ︸
right-hand side weakening

(9.6)

These subsumption proofs are common in our proof generation procedure (e.g. (Remainderj)
is also a subsumption). We elaborate on subsumption proofs in Section 9.3.

190

9.2.2 Phase 2: Proving (Stepj)

We combine the proofs for each branch and the remainder as follows:

ΓL ⊢ thintj ∧ phintj,1 ⇒1
exec t

hint
j,1 ∧ phintj,1 (Branchj,1)

... (9.7)

ΓL ⊢ thintj ∧ phintj,lj
⇒1

exec t
hint
j,lj
∧ phintj,lj

(Branchj,lj)

ΓL ⊢ thintj ∧ premj → tremj ∧ premj (Remainderj)

Note that our proof goal (Stepj) uses “⇒exec”, while the above use either one-step execution
(“⇒1

exec”) or implication (“→”). The following lemma allows us to turn one-step execution
and implication (i.e. “zero-step execution”) into the reflexive-transitive execution relation
“⇒exec”:

Lemma 9.2 (⇒exec Introduction).

ΓL ⊢ φ→ ψ

ΓL ⊢ φ⇒exec ψ

ΓL ⊢ φ⇒1
exec ψ

ΓL ⊢ φ⇒exec ψ (9.8)

Then, we need to verify that the disjunction of all path conditions in the branches (including
the remainder) is implied from the initial path condition:

ΓL ⊢ phintj → phintj,1 ∨ · · · ∨ phintj,lj
∨ premj (9.9)

The above implication includes only logical constraints and no configuration terms, and thus
involves only domain reasoning. Therefore, we translate it into an equivalent FOL formula
and delegate it to SMT solvers, such as Z3 [123].

From Equation (9.9), we can prove that the left-hand side of (Stepj), thintj ∧ phintj , can be
broken down into lj + 1 branches by propositional reasoning:

ΓL ⊢
(
thintj ∧ phintj

)
→
(
thintj ∧ phintj,1

)
∨ . . .∨

(
thintj ∧ phintj,lj

)
∨
(
thintj ∧ premj

)
(9.10)

Note that the right-hand side of Equation (9.10) is exactly the disjunction of all the left-hand
sides of (Branchj,l) and (Remainderj). Therefore, to prove the proof goal (Stepj), we use
the following lemma, which allows us to combine the executions in different branches into
one (we will also need a consequence rule for ⇒exec like Lemma 9.1, which is derivable from
Lemmas 9.1 and 9.2):

191

Lemma 9.3 (⇒exec Merge).

ΓL ⊢ φ1 ⇒exec ψ1 . . . ΓL ⊢ φn ⇒exec ψn

ΓL ⊢
n∨
i=1

φi ⇒exec

n∨
i=1

ψi (9.11)

9.2.3 Phase 3: Proving (Goal)

We are now ready to generate the final proof object for symbolic execution. At a high
level, the proof uses the reflexivity and transitivity of the program execution relation ⇒exec.
Therefore, our proof generation method is an iterative procedure. We start with the reflexivity
of ⇒exec, that is:

ΓL ⊢ (t ∧ p)⇒exec (t ∧ p) (9.12)

Then, we repeatedly apply the following steps to symbolically execute the right-hand side of
Equation (9.12), until it becomes the same as the right-hand side of (Goal):

1. Suppose we have obtained a proof object for

ΓL ⊢ (t ∧ p)⇒exec

(
tim1 ∧ pim1

)
∨ · · · ∨

(
timm ∧ pimm

)
(9.13)

where tim1 , pim1 , etc. represent the intermediate configurations and constraints, respec-
tively.

2. Look for a (Stepj) claim of the form

ΓL ⊢
(
thintj ∧ phintj

)
⇒exec

(
thintj,1 ∧ phintj,1

)
∨ · · · ∨

(
thintj,lj
∧ phintj,lj

)
∨
(
tremj ∧ premj

)
(Stepj)

such that thintj ∧ phintj ≡ timi ∧ pimi , for some intermediate constrained term timi ∧ pimi .
Without loss of generality, let us assume that i = 1, i.e., the first intermediate constrained
term tim1 ∧ pim1 can be rewritten/executed using (Stepj).

3. Symbolically execute tim1 ∧ pim1 in Equation (9.13) for one step by applying (Stepj), and
obtain the following proof:

ΓL ⊢ (t ∧ p)⇒exec

(
thintj,1 ∧ phintj,1

)
∨ · · · ∨

(
thintj,lj
∧ phintj,lj

)
∨
(
tremj ∧ premj

)
︸ ︷︷ ︸

right-hand side of (Stepj)

(9.14)

∨
(
tim2 ∧ pim2

)
∨ . . . ∨

(
timm ∧ pimm

)︸ ︷︷ ︸
same as Equation (9.13)

(9.15)

192

Finally, after all symbolic execution steps are applied, we check if the resulting proof goal is
the same as (Goal), potentially after permuting the disjuncts on the right-hand side. If yes,
then the proof generation method succeeds and we generate a proof certificate for (Goal).
Otherwise, the proof generation method fails, indicating potential mistakes made by K’s
symbolic execution engine.

9.3 GENERATING PROOFS FOR PATTERN SUBSUMPTION

It is common in generating proof objects for symbolic execution that we need to generate
the proof objects for implications between constrained terms. We call such implications
subsumptions. Formally, a subsumption has the form ΓL ⊢ (t ∧ p)→ (t′ ∧ p′). We reduce it
into the following two sub-goals that are sufficient for the subsumption to hold:

ΓL ⊢ p→ p′ ΓL ⊢ p→ (t = t′) (9.16)

To prove the first sub-goal ΓL ⊢ p→ p′, we note that both p and p′ are logical constraints.
Therefore, its proof is delegated to external SMT solvers. To prove the second sub-goal
ΓL ⊢ p→ (t = t′), we first try an SMT solver with all constructors abstracted to uninterpreted
functions. If the SMT solver proves the goal with such abstraction, our proof generation
method succeeds. Otherwise, we break down t and t′ into sub-terms. Specifically, if t ≡
f(t1, . . . , tn) and t′ ≡ f(t′1, . . . , t

′
n), we reduce the sub-goal into a set of goals:

ΓL ⊢ p→ (t1 = t′1) · · · ΓL ⊢ p→ (tn = t′n) (9.17)

Then we call our proof generation method recursively on the above sub-goals. Note that the
second type of sub-goals corresponds to the unification between t and t′.

Our method here for pattern subsumption is incomplete but covers most simplifications
done by K. Generally speaking, it is undecidable to prove such subsumptions as it requires
to prove first-order theorems in an initial algebra of an equational/algebraic specification.
However, there exist techniques that are shown to be effective in automating inductive
theorem proving, such as Maude ITP [66], which can be integrated by our work in the future.

9.4 GENERATING PROOFS FOR COINDUCTION

Recall that the verification algorithm (Algorithm 9.1) performs symbolic execution from
the left-hand side of each claim until all branches are subsumed by the right-hand side.

193

While the proof generation procedures in previous sections Sections 9.2 and 9.3 can cover
symbolic execution already, the missing part is line 12 in Algorithm 9.1, where we apply
not the semantic rules but the claims in R to perform symbolic execution, which forms a
circular argument. Our purpose is to generate proof objects that justify the soundness of
such circular reasoning, by showing that the algorithm is performing a coinduction on the
(potentially infinite) execution trace.

We start with the simplest case when R has only one claim φ⇒reach ψ. We assume that
we have already rewritten φ to some intermediate configuration φ′ using at least one steps
(so logically speaking, the set of claims R = {φ⇒reach ψ} has been flushed to the reachability
logic axiom set by (Transitivity) in Figure 2.12):

ΓL ⊢ φ⇒+
reach φ

′ (9.18)

Further, suppose that the proof hint indicates that we need to apply the original claim
φ⇒reach ψ (as a coinduction hypothesis) to φ′. We generate a proof object for this single
step

ΓL ⊢ □(∀freeVar(φ, ψ) . φ⇒reach ψ)→ φ′ ⇒reach φ
′′ (9.19)

where freeVar(φ, ψ) is the set of all free variables in φ and ψ. Intuitively, we instantiate all
the free variables using the substitution specified by the proof hint, where φ′′ is the result of
applying the claim φ⇒reach ψ as a regular semantic rule on φ′. Recall that Equation (9.19)
is the encoding of the reachability judgment {φ⇒reach ψ} ⊢reach∅ φ′ ⇒ φ′′.

Now, we apply (Transitivity) to Equations (9.18) and (9.19) and obtain the proof object
for

ΓL ⊢ ◦□(∀freeVar(φ, ψ) . φ⇒reach ψ)→ φ⇒+
reach φ

′′ (9.20)

which is the encoding of the reachability judgment ⊢reach{φ⇒reachψ} φ ⇒ φ′′, where φ ⇒reach ψ

belongs to the circularity set. Then, we reuse the proof generation procedure in Section 9.2
to generate the proof object for the symbolic execution of φ′′, except that now there is an
additional premise ◦□(∀freeVar(φ, ψ) . φ⇒reach ψ) that encodes the semantics of circularity.

Finally, if the verification algorithm successfully terminates, we will obtain the proof object

ΓL ⊢ ◦□(∀freeVar(φ, ψ) . φ⇒reach ψ)→ φ⇒reach ψ (9.21)

which by (Circularity), derives ΓL ⊢ φ⇒reach ψ, as desired.
Generally speaking, Algorithm 9.1 supports proving n claims at the same time, i.e.,

R = {φ1 ⇒reach ψ1, . . . , φn ⇒reach ψn}, where the proof of each claim could arbitrarily invoke

194

Table 9.1: Proof Generation and Proof Checking Performance: Formal Verification

Time (seconds)
Task Spec. LOC Step # Hint Size Proof Size K Gen. Check 1 Check 2
sum.imp 40 42 0.58 MB 37/1.6MB 4.2 105 1.8 9.6
sum.reg 46 108 2.24MB 111/3.6MB 9.1 259 5.4 15.9
sum.pcf 18 22 0.29 MB 38/1.5MB 2.9 119 2.4 12.2
exp.imp 27 31 0.5MB 37/1.5MB 3.7 108 2.0 10.5
exp.reg 27 43 0.96 MB 70/2.3MB 4.7 177 3.1 13.3
exp.pcf 20 29 0.5MB 65/2.3MB 3.8 199 3.1 13.7
collatz.imp 25 55 1.14 MB 49/1.7MB 4.8 138 2.6 12.4
collatz.reg 37 100 3.66MB 209/4.7MB 9.3 414 5.5 31.6
collatz.pcf 26 39 1.51 MB 110/2.2MB 5.3 247 5.2 23.6
product.imp 44 42 0.62 MB 44/1.8MB 3.9 124 2.4 11.0
product.reg 24 42 0.81 MB 65/2.3MB 4.3 164 4.0 11.8
product.pcf 21 48 0.82 MB 80/2.8MB 5.3 234 4.9 18.4
gcd.imp 51 93 1.9MB 74/2.3MB 22.9 237 2.7 17.8
gcd.reg 27 73 1.92 MB 124/3.3MB 18.6 306 3.6 16.9
gcd.pcf 22 38 1.35 MB 150/3.2MB 12.8 367 5.2 28.5
ln/count-by-1 44 25 0.24 MB 28/1.3MB 2.7 81 1.6 8.0
ln/count-by-2 44 25 0.26 MB 28/1.3MB 9.0 88 1.4 8.1
ln/gauss-sum 51 39 0.53 MB 38/1.6MB 4.6 107 2.0 10.2
ln/half 62 65 1.3MB 63/2.2MB 13.1 173 3.0 11.8
ln/nested-1 92 84 1.88 MB 104/3.4MB 7.5 231 5.9 20.1

the other claims as coinduction hypotheses. This is called set circularity, which is derivable
in reachability logic (see [140, Lemma 5])

A ⊢reachR φ⇒ ψ for all (φ⇒ ψ) ∈ R
(Set Circularity)

A ⊢reach∅ φ⇒ ψ for all (φ⇒ ψ) ∈ R (9.22)

Here, all the claims in R are simultaneously added to the circularity set, featuring a mutual
coinduction among all the coinduction hypotheses. Our current implementation does not
support (Set Circularity) in its full generality. We assume that the proof of each claim
only invokes itself as the coinduction hypothesis. This is not a restriction in theory because
using [140, Lemma 5], any proof using (Set Circularity) can be mechanically translated
to one using only (Circularity), which is fully supported by our implementation.

195

9.5 EVALUATION

We evaluated our proof generation method using two benchmark sets. The first benchmark
set consists of some verification problems of programs written in three programming languages,
which aims at showing that our method is indeed language-agnostic. The second benchmark
set is a selection of C verification examples from the SV-COMP competition [141]. We used a
machine with Intel i7-12700K processors and 32 GB of RAM. The evaluation results are shown
in Table 9.1. From left to right, we list the verification tasks, specification LOC, number of
symbolic execution steps, proof hint size, proof object size (uncompressed/compressed),
K verifier time (without proof generation), proof generation time, and proof checking time
(check 1 using smetamath [142] and check 2 using our own implementation in Rust [143]).
Tasks with prefix ln/ are from the loop-new benchmark of SV-COMP [141]. In the following,
we discuss the benchmark sets and the evaluation results in detail.

To demonstrate that our proof generation method is language-agnostic, we defined three
different programming languages in K:

1. IMP (see Figure 2.13): a simple imperative language with C-like syntax;

2. REG: an assembly language for a register-based virtual machine;

3. PCF, i.e., programming computable functions [144]: a typed functional language with
a fixed-point operator.

We considered the following verification examples:

1. SUM, which computes 1 + · · ·+ n for input n;

2. EXP, which computes nk for inputs n and k;

3. COLLATZ, which computes the Collatz sequence [145] for input n until it reaches 1;

4. PRODUCT, which computes the product of integers using a loop.

5. GCD, which computes the greatest common divisor of two integers using the Euclidean
algorithm.

All benchmark programs and their formal specifications are implemented/specified in the
three programming languages IMP, REG, and PCF. Table 9.1 shows that our prototype
can generate proof objects for all these programs without additional effort. Besides these
verification examples, we also considered the C programs from the loop-new benchmark set
in the SV-COMP competition [141].

196

Even for simple arithmetic programs such as SUM, the symbolic execution process is
complicated, as one can see from the proof object sizes in Table 9.1. A lot of seemingly
innocuous operations that are performed by the K deductive verifier, such as substitution
and equational simplification, result in very long proof objects, which encode proof steps
down to the lowest possible level—the proof system.

We measured the performance of both proof generation and proof checking. For proof
generation, we measured the generation time, the number of symbolic execution steps,
the sizes of the proof hint and the final proof objects. We also measured the sizes of
compressed proof objects using a generic compression tool xz [146]; these compressed proofs
can be decompressed and checked on-the-fly using an online Metamath verifier such as
mmverify [147].

At a high level, the proof generation time consists of (1) the time to generate the AML
theory ΓL from the K formal language semantics of L, and (2) the time to generate the proof
objects using the procedures described in Chapter 9. In our experiments, (1) only takes a
few seconds and is linear to the number of semantic rules. Most time is spent on (2), which
is linear to the number of symbolic execution steps conducted during verification and the
sizes of the intermediate configurations. Generally speaking, deductive verifiers are slow,
and it takes even more time for users to propose the right invariants. In our view, it is
therefore acceptable to spend the extra time on generating rigorous and machine-checkable
proof objects for deductive verifiers and their verification runs, which help establish the
correctness of the verification results on a smaller trust base.

Due to the simplicity of Metamath and the 200-line formalization of AML, it is very
fast to check proof objects. Once the proofs are generated, they can be made public as
machine-checkable correctness certificates of the verification tasks. Anyone concerning about
the correctness of the verification can access the public proof objects, set up a proof checking
environment (which is much simpler than setting up a verification environment), and check
the proofs independently. We are optimistic about the scalability of our method on large K

developments because proof checking scales well. The sizes of proof objects are linear to the
number of symbolic execution steps and the sizes of configurations. The complexity of proof
checking is also linear to the sizes of proof objects. We do not see a nonlinear factor or an
exponential explosion in our proof generation method.

Metamath has its own format to compress proofs (see [13, Appendix B]). On top of that,
proof objects can be compressed as plain text files using any mainstream compression tool
such as xz [146], which leads to >95% reduction in the proof sizes, as shown in Table 9.1, at
the expense of spending more time in decompressing the proofs for proof checking and using
an online proof checker, which can be slower than an offline one. It is left as future work to

197

study such space-time trade-off in proof checking and find the right balance.

9.6 DISCUSSION

We first discuss the trust bases of proof checking and K and then provide some interesting
details about our prototype implementation.

9.6.1 Trust base of proof checking

There is an intrinsic distinction between mechanically proving/checking/verifying the
correctness of a tool and trusting that it is correct. Formal verification transfers the trust
on the system in question to that on the verifier, which in some cases can be more complex
than the system being verified. The system can itself be a verifier, which can then be
verified/certified further, following the once-and-for-all or case-by-case approaches above.
Most state-of-the-art verified/verifying tools, including ours, involve a large number of
nontrivial logical transformations and/or encodings of a formal system into another. In
the end, they produce proof objects that can be automatically checked by a proof checker,
which belongs to the trust base. The simpler and smaller the proof checker is, the higher
trustworthiness we achieve.

Most existing works use a proof assistant such as Coq [11] or Isabelle [148] to encode and
check the final proof objects. While proof assistants are commonly used in specifying and
reasoning about computer systems, they are complex artifacts. For example, Coq has 200,000
lines of OCaml, and the safety-critical kernel still has 18,000 lines [149]. It means that if Coq
is used as the final proof checker, there is at least 18,000 lines of OCaml code to be trusted.
It is difficult for us to find the statistics for other proof assistants and/or theorem provers
but we expect they are similar.

Metamath [13], on the other hand, is a tiny language that can express theorems in abstract
mathematics, accompanied by proofs that can be checked by a program, called a Metamath
verifier. Internally, the Metamath verifier behaves like an automaton with a stack. Axioms
and theorems are associated with unique labels and a proof is a sequence of such labels. To
check a proof, one maintains a stack that is empty initially, scans the proof, and pushes/pops
the axioms and/or the hypotheses/conclusions of theorems accordingly. If in the end the
stack contains exactly one statement that is identical to the theorem being proved, the proof
is checked. In particular, it does not need to do any complex inference such as pattern
matching or unification, making proof checking very simple. As a result, Metamath has
dozens of independently-developed verifiers. [13] lists 19 of them, some of which are very

198

small: 550 lines of C#, 400 lines of Haskell, 380 lines of Lua, and 350 lines of Python. As a
proof-of-concept, we also implemented a Metamath verifier in 740 lines of Rust [143], which
supports both regular and compressed proofs, and used it in our experiments.

In our work, we use Metamath to encode the proof objects. Also, we build on an existing
formalization of AML and its proof system in 200 lines of Metamath code [138]. As for what
counts as the actual proof checker in our approach, there can be different opinions, depending
on whether Metamath is regarded as a programming language, or as another calculus whose
inference system is implemented in a mainstream language, on top of which the proof system
of AML is formalized. If Metamath is considered as a programming language, our proof
checker has 200 lines. Otherwise, our proof checker consists of the 200-line Metamath
definition plus an implementation of Metamath (550 lines of C#, 400 lines of Haskell, etc.),
which in total has fewer than 1000 lines.

In our (maybe biased) view, there is no reason to not regard Metamath as a programming
language like C# and Haskell. Metamath is much simpler than (almost) all programming
languages. The fact that Metamath has many independent implementations using different
programming languages makes it depend less on any particular programming language and
its runtime environment, such as compilers and underlying operating systems. Metamath is
also bootstrapping, in the sense that the executable of its own verifier (as a piece of machine
code run on x86-64 Linux) is formally defined in Metamath itself [150, Section 6]. What is
the highest possible correctness guarantee that we can expect from a proof checker? [150]
proposes five possible levels to which we can prove the correctness of the checker, from the
level of a logical rendering of the code to that of the logic gates that make up the computer
and even the fabrication process relative to some electrical or physical model (although one
may not want to do so because the result will be too specific to that particular computer or
digital setup). The meta-point we want to make here is that proof checking systems such as
Metamath have perhaps not received the attention they deserve from the formal verification
and theorem proving community.

9.6.2 Trust base of K

K is a complicated artifact under active development. Among its 550,000 lines of code base,
roughly 40,000 lines are for the frontend, implemented in Java. There is also 160,000 lines
of C++/Java code that focuses mainly on efficient concrete program execution. The most
relevant code base is the 120,000-line Haskell back-end that supports symbolic reasoning and
formal verification. The language-agnostic deductive verifier is implemented in the Haskell
back-end of K.

199

The K frontend provides an intuitive frontend syntax that allows to write formal semantics
more easily. For example, the frontend syntax swallows the entire concrete syntax of the
programming language being defined and allows language designers to use directly the concrete
syntax in writing the semantic rules, without needing to write their abstract syntax trees.
Also, the frontend syntax includes shortcuts and notations for writing program configurations.
In a semantic rule, only the necessary part of a configuration needs to be explicitly mentioned,
while the other part can be omitted and automatically inferred by K. The frontend also
implements type inference for the variables in semantic rules, so the users usually do not
need to explicitly specify the variable types.

All the above frontend shortcuts and notations will be eliminated by the frontend of K. The
frontend tool kompile translates the formal language semantics into an intermediate formal
language called Kore [151], which is used to specify patterns and axioms. kompile parses
all the concrete syntax into abstract syntax trees, represented as patterns. It also infers
the omitted parts of configurations in semantic rules and the types of all the variables. In
the end, kompile produces one Kore definition— as one source file definition.kore—that
includes the entire AML encoding of the formal language semantics. The compiled Kore file
is then passed to K’s back-ends to generate the corresponding language tools.

Therefore, Kore behaves as the intermediate interface between the frontend and the back-
ends. It is also the boundary between the informal and formal worlds. Since Kore is a formal
specification language for writing AML theories, the formal semantics of a Kore definition is,
by definition, the AML theory that it defines. However, the frontend syntax of K (as shown
in Figure 2.13) does not (yet) have a formal semantics. Its meaning is completely determined
by kompile, which lacks a formal specification.

In this work, we are interested in certifying back-end correctness. More precisely, we are
certifying the language-agnostic deductive verifier, implemented by the Haskell back-end.
Previously, the correctness of formal verification in K depends on the 120,000-line Haskell
back-end and its internal verification algorithm (Algorithm 9.1) as well as optimized, complex
algorithms for symbolic execution and pattern matching/subsumption. By generating proof
objects for these algorithms, we eliminate them from the trust base.

We should also clarity that the entire trust base for end-to-end verification in K is still
large and should be further reduced in the future. Firstly, the kompile tool belongs to
the trust base. Secondly, the automatic encoder (developed in [136]) that translates Kore
into Metamath belongs to the trust base (Figure 8.2), although the translation is very
simple; it only parses the Kore definition and prints it in the Metamath format. Thirdly, the
formalization of AML in Metamath belongs to the trust base, which is very small (200 lines).
However, all the back-end algorithms are no longer in the trust base. They are certified by

200

AML proofs and the proof checker.

9.6.3 Implementation

We implemented a higher-level tactic language for writing proofs about types/sorts, from
which the lower-level Metamath proofs are constructed. Note that K operates in a sorted
setting while AML is unsorted. Instead, sorts are defined axiomatically using theories. To
bridge this gap and reduce human engineering effort, we developed and used the tactic
language to automate the generation of all the sort-related proofs. For example, to specify
that the free variables x and y in a pattern φ have sorts s1 and s2, respectively, we write
⊢ (x : s1 ∧ y : s2)→ φ, where x : s1 and y : s2 are predicates, stating that x and y belong to
the inhabitants of s1 and s2, respectively. Now, suppose we have proved ⊢ x : s1 → ψ and
⊢ (y : s2 ∧ x : s1)→ (ψ → φ) and we want to prove ⊢ (x : s1 ∧ y : s2)→ φ using the following
propositional lemma:

⊢ θ → φ ⊢ θ → (φ→ ψ)

⊢ θ → ψ (9.23)

The tactic language will automatically rearrange the sort premises by proving that ⊢ (x : s1 ∧
y : s2) ↔ y : s2 ∧ x : s1. A lot of such simple but tedious sort-related proofs are handled by
the tactic language.

We also developed a library of 196 lemmas about the rewriting and reachability relations
such as Lemma 9.2 in Chapter 9. These lemmas were proved manually in Metamath in
∼4,000 lines and have been added to the existing Metamath database of AML. Note that all
these lemmas are checked by the Metamath verifiers so they do not belong to the trust base.

We implemented several optimizations for constructing proof objects to improve perfor-
mance. To avoid reproducing a (sub)-proof over and over again, we cache an incomplete
work-in-progress proof when its size exceeds a certain threshold and add it as a lemma, which
can be used in future proofs to reduce duplicates. To save runtime memory, we represent
proof trees as directed acyclic graphs (DAGs) where the common subtrees are shared. When
we apply an intermediate lemma or combine multiple DAGs, we use a greedy algorithm to
merge the subtrees that have the same conclusion. Even with these optimizations, proofs are
still huge (in the order of tens of megabytes), which is primarily due to the space-inefficient
text-based encoding. To reduce the proof sizes further, we can compress the proofs using
a generic compression tool such as xz [146], which provides >95% reduction in size; see
Section 9.5 for more details.

The K deductive verifier consists of a powerful symbolic execution tool that supports many
complex features such as evaluation order, conditional rewriting, “otherwise” rules (which are

201

catch-all rules if no other semantic rules can be applied), user-defined contexts, unification
modulo axioms, etc. Our current prototype implementation supports proof generation for a
significant subset of these features. For evaluation orders, K specifies them using strictness
attributes (Section 2.15), which are reduced to a special case of conditional rewriting, which is
supported by our tool. The “otherwise” rules are also reduced to conditional rewriting where
the condition states that no other semantic rules are applicable, and thus are also supported
by our tool. K also provides a more advanced (but also much less often used) way to define
evaluation orders using explicit user-defined contexts, which is not supported by our tool
yet. Finally, unification modulo maps (i.e., unification modulo associativity, commutativity,
and units) is supported. Currently, the logical encoding of a K semantics is computed by
a frontend tool called kompile (see Figure 8.2), which lacks a clear documentation of the
axioms it generates. This makes developing the proof generation procedure harder because
we need to manually find suitable classes of axioms in kompile’s output. Therefore, we
expect supporting proof generation for large real-world K developments to be a long-term
endeavor, which involves a formalization of kompile and requires a close collaboration with
the K team (see Section 9.6.2 for more discussion on kompile).

9.6.4 Future directions

We identify some main future directions of the current work. Firstly, as discussed in
Section 9.6.2, the frontend tool kompile needs to be trusted. It is not satisfying, because the
frontend consists of roughly 40,000 lines of Java, while many tasks that it performs, such
as configuration inference and completion, can also be formalized as AML proofs, the same
way how program execution and deductive verification are AML proofs. In the long run, we
see no reason to not formalize the entire K frontend, even including the parser. Indeed, the
concrete syntax given by a context-free grammar can be regarded as the initial algebra of an
equational/algebraic specification [109]. A parser can then be specified as a function from
the domain of strings (sequences of characters) to that initial algebra. Since initial algebra
semantics can be defined in AML [97], the parsing function can be inductively axiomatized
and certified by AML proofs.

The second future direction is to incorporate proofs for SMT solvers. Currently, our
implementation trusts SMT solvers and does not generate proof objects for them. K uses
SMT solvers for domain reasoning, such as ΓL ⊢ φ→ ψ, where φ and ψ are logical constraints
about domain values such as integers. To prove such domain properties, we encode them
as equivalent FOL formulas and query an SMT solver, thus resulting in a gap in our proof
objects that needs to be addressed separately in the future, following existing research such

202

as [152, 153].
The third future direction is to address the current incompleteness of the proof generation

procedure (i.e. failure to produce a proof even when the verifier succeeds). Currently, we can
identify two sources of incompleteness:

1. The subsumption proof generation (Section 9.3) may not match the actual simplification
procedure of the K verifier, thus resulting in subsumptions that are correctly done by K

but cannot be proved by our proof generation tool.

2. Our proof generation procedure does not support the (Set Circularity) rule as
discussed in Section 9.4, while the K verifier does use (Set Circularity) in general.

These sources of incompleteness arise from the inconsistency between our proof generation
procedure and the actual implementation of the K verifier. Therefore, a long-term collaboration
with the K team is required to improve the completeness of our proof generation tool.

Finally, as discussed in Section 9.1, we plan to extend our proof generation method to
support proof generation for all-path reachability reasoning [3, 154]. In the current work,
we only consider one-path reachability logic, which captures the partial correctness of one
execution trace. For nondeterministic and concurrent programs, we need all-path reachability
logic to prove the correctness of all execution traces. All-path reachability logic is proposed
for precisely that purpose. An all-path reachability claim φ ⇒∀

reach ψ holds iff for every
maximal and finite execution traces starting from φ, ψ is reachable. The proof system of
all-path reachability logic has identical proof rules as one-path reachability logic in Figure 2.12
(replacing ⇒ with ⇒∀

reach), except one additional axiom called (Step)

(Step) A ⊢reach∅ φ⇒∀
reach (ψ1 ∨ · · · ∨ ψK) (9.24)

where A = {lhs1 ⇒ rhs1, . . . , lhsK ⇒ rhsK} is the set of all the semantic rules, which are
one-path rules in nature. The (Step) axiom derives all-path claims from these semantic rules,
where ψk is the result of executing φ for one step, using the k-th semantic rule lhsk ⇒ rhsk

for 1 ≤ k ≤ K. Thus, the (Step) axiom states that the only way to make an execution step
is to use one of the semantic rules in A. Since the current K pipeline that translates K into
AML (Figure 8.2) is incomplete and the resulting theory ΓL does not have the (Step) axiom,
proof generation for all-path reachability claims is left as future work.

203

Chapter 10: RELATED WORK

We present related work and compare them with this work on the following topics: (1)
existing approaches to programming language frameworks; (2) existing approaches to defining
binders; (3) existing approaches to automated fixpoint reasoning; and (4) existing approaches
to trustworthy programming language tools.

10.1 FORMAL SEMANTICS AND PROGRAMMING LANGUAGE FRAMEWORKS

It is hard to discuss, even summarily, the over half a century of research in formal semantics
and programming language frameworks. Since the 1960s, various semantics notions and
styles have been proposed and become canonical approaches to defining formal semantics,
including Floyd-Hoare axiomatic semantics [14, 15], Scott-Strachey denotational semantics
[16], initial algebra semantics [109], and various types of operational semantics [17, 18, 19, 20].
A nice survey about the earlier research in formal semantics and semantic frameworks in the
past centenary can be found in [155]. More recent work will be discussed shortly after. By
collecting these references to related work, we realize how much progress we have been made
since the first paper on formal semantics of programs published in 1960s, and how close we
are to reaching the ideal language framework vision (Figure 1.1).

CENTAUR [156] is one of the earliest attempts in developing a system that takes formal
language definitions and automatically generates programming environments, which consist of
many language tools, including interpreters and debuggers, equipped with graphic interfaces.

Proof assistants such as Coq [11] and Isabelle [148] represent an important trend to define
the formal semantics of programming languages. Programs and program configurations are
defined as data structures, and various types of formal semantics can be defined as functions
or relations on these data structures. Program execution and verification can be done in a
manual, semi-automatic, or fully automatic manner, with or without human interference.
Meta-properties, such as the equivalence between the two different semantics of a language,
can be proved, but often require remarkably effort. Formal syntax is often not considered.

Due to the complexity of aforementioned proof assistants, lightweight tools such as Ott [157]
occurred, serving as an expressive and intuitive front-end to write formal syntax and semantics
definitions of programming languages and calculi. Automatic tools such as those which
sanity-check the formal definitions or translate definitions to proof assistants, are implemented.

Component-based specification (CBS) framework [158] observes that many programming
languages share a variety of many fundamental programming constructs, or simply funcons.

204

CBS framework allows one to define the formal semantics of programming languages by
translating them to funcons in a component-based and modular way, aiming at good re-
usability of formal definitions.

Spoofax [159] is a platform for designing programming languages, in particular domain
specific languages (DSL), with an integration of language tools, including syntax defini-
tion formalism such as SDF [160], program translation and code generation tools such as
Stratego [161], program analysis tools such as data flow analyzer FlowSpec [162].

PLT Redex [163], which is now embedded in the programming language Racket, is a DSL
for designing formal syntax and operational semantics as reduction rules. Random programs
can be automatically generated that serve as tests of the semantics.

Rosette [164] is a solver-aided programming language that extends Racket with a small set
of language constructs for program verification and synthesis. Language designers, often of
DSL, implement interpreters in Rosette, and by symbolic evaluation, the language synthesis
and verification tools are generated for free. Racket has helped non-expert users to design
and create solver-aided tools for various domains. Research on symbolic profiling examines
process of symbolic evaluation and proposes techniques that automatically fix performance
bottlenecks of the generated tools [165].

10.2 EXISTING APPROACHES TO DEFINING BINDERS

We discuss some existing approaches to defining binders and compare them with our
approach using matching µ-logic, as presented in Sections 5.12 and 5.13. These approaches
include: (1) de Bruijn techniques [166], which give α-equivalent terms identical encodings;
(2) combinators [37], which translate terms with binders to binder-free combinator terms;
(3) nominal logic [167], which uses first-order logic (FOL) to axiomatize name-swapping
and freshness, and uses them to axiomatize object-level binding; (4) higher-order abstract
syntax [168] (abbreviated HOAS), which uses fixed binders in the meta-language, often
a variant of typed λ-calculus, to define arbitrary binders in the object-level systems; (5)
explicit substitution [169], which uses customized calculi where the meta-level operation
of capture-avoiding substitution is incarnated in an object-level operation as part of the
calculi; (6) term-generic logic [40] (abbreviated TGL), which is a FOL variant parametric in
a generic term set, defined axiomatically and not constructively, which can be instantiated
by a concrete binder syntax. We discuss how these approaches handle binders and binding
behavior using the following λ-expression as an example (a closed expression with distinct

205

bound variables, which requires α-renaming during reduction to avoid variable-capture):

(λz . (zz))(λx . λy . (xy)) (10.1)

De Bruijn encodings eliminate bound variables by replacing them with indexes that denote
the number of (nested) binders that are in scope between them and their corresponding
binders.4 For example, the de Bruijn encoding of (10.1) is (λ(11))(λλ(21)), where 1 means
that it is bound by the closest binder and 2 means that it is bound by the second closest
binder. Bound variables are eliminated so α-equivalent expressions have the same de Bruijn
encoding. However, substitution requires index shifting, to adjust the indexes. De Bruijn
techniques are used as the internal representations of terms in several theorem provers, but
the encoding is not human readable, implementations are often tricky to get right, and
efficiency problems can still appear on large terms.

Combinators translate binders to binder-free terms, which are built with constants like k and
s, and application. This translation is called abstraction elimination, and can be implemented
using term rewriting [170]. It may cause exponential growth in the translated term size.
Reduction of combinatory terms is done using equations like kxy = x and sxyz = (xz)(yz)

regarded as rewrite rules. Combinatory terms are not human readable; for example, (one of)
the equivalent combinator term of (10.1) is s(skk)(skk)s(s(ks)(s(kk)(skk)))(k(skk)). Using
combinators, the binding behavior of λ is captured implicitly through abstraction elimination.

Nominal logic refers to a family of FOL theories whose signatures contain a name-swapping
operation (x y) · e that swaps all (free and bound) occurrences of x and y in e, and a freshness
predicate x# e stating that x has no free occurrences in e. The notions of α-equivalence
and capture-avoiding substitution are then axiomatized using additional FOL axioms on top
of the axioms of name-swapping and freshness. As an example, the following is an axiom
in [167, Appendix A.3] that states that swapping two fresh names that do not occur free in a
term has not effect:

(F1) ∀x :V . ∀y :V . ∀e :Exp . x# e ∧ y # e→ (x y) · e = e (10.2)

where V and Exp are the sorts of variables (also called atoms) and expressions, respectively.
Nominal logic also defines a new sort [V]Exp and a FOL binary function _._ : V × Exp→
[V]Exp for binding, whose properties such as α-equivalence are axiomatized. Then, β-reduction

4Other de Bruijn encodings count the binders from the top of the terms.

206

in λ-calculus, e.g., can be defined in the following way [171, pp. 251, Eq. (12.17)]:

(β in Nominal Logic) ∀x :V . ∀e :Exp .∀e′ :Exp . app(lam(x.e), e′) = subst((x.e), e′)

(10.3)

where subst(_,_) is a binary function defined by four axioms (see [167, pp. 8]), in accordance
to the four possible forms that e can take (i.e., the variable x; a variable distinct from x;
application; or abstraction). E.g., the following is the substitution axiom for abstraction [171,
Eq. (12.20)]:

∀x :V . ∀y :V . ∀e :Exp . ∀e′ :Exp . y # e′ → subst(x . lam(y . e), e′) = lam(y . subst(x . e, e′))

(10.4)

Note that x and e are meta-variables in λ-calculus and become normal variables in nominal
logic, so the whole embedding is a deep embedding.

Besides nominal logic and its meta-theory [172, 173, 174], there is a wider range of research
on nominal techniques in general, including studies on using Fraenkel-Mostowski sets [175],
nominal sets [176] or similar set-theoretic structures [177] as well as category-theoretic
notions [178] to formalize and reason about binders and operations on them, and have
resulted in practical implementations that support complex recursive and inductive reasoning
over terms with bindings as well as algorithms for unification [179] and narrowing [180].
These nominal approaches deal with variable names and bindings directly, treat variable
names as normal data that can be manipulated, quantified, and reasoned about, and give
explicit definitions to operations such as free variables and capture-avoiding substitution (via
name-swapping and freshness). Note that nominal approaches can be directly exploited in
matching µ-logic because FOL is a methodological fragment of matching µ-logic.

Higher-order abstract syntax (HOAS) is a design pattern where some expressive higher-
order calculus, usually one of the variants of typed λ-calculus [168, 181, 182, 183, 184, 185] or
second-order equational logic [184, 186], is used as a foundation to define object-level binders.
As an example, we show (part of) the HOAS-style definition of (untyped) λ-calculus in the
Twelf system [187]:

exp : type. // the type of λ-expressions (10.5)

app : exp -> exp -> exp. // function application (10.6)

lam : (exp -> exp) -> exp. // function abstraction (10.7)

red : exp -> exp -> type. // reduction relation (10.8)

207

red-beta : red (app (lam ([x] (F x))) E) (F E). // β-reduction (10.9)

where in red-beta, [x]_ is the built-in binder of (the HOAS variant underlying) Twelf; E
is a variable of type exp; F is a variable of the function type exp -> exp; and (F x) is the
(metalevel) application of F to x. Higher-order matching is needed when red-beta is applied,
and the internal substitution mechanism of Twelf is triggered when F is applied to E. The
binding behavior of λ is obtained from the binding behavior of the built-in binder [x] _, via a
constant lam; specifically, λx.e is encoded as lam ([x] e). Object-level substitution is avoided,
but clearly this is not how β-reduction is usually defined (for the usual definition, see (β,
Reduction) below). Application in λ-calculus is defined by a simple de-sugaring to the
builtin application, using a different constant app; that is, e1 e2 is defined as app e1 e2 (rather
than e1 e2). Thus, the definition needs to be justified by proving adequacy theorems that
establish a bijection between the expressions and formal proofs of λ-calculus, and the HOAS
terms and type derivations, which is a tedious and nontrivial task [188].

Explicit substitution turns the implicit meta-level substitution operation into more explicit
and atomic steps, in order to provide a better understanding of the operational semantics
and execution models of higher-order calculi (see [189, pp. 1–2]; see also [190, pp. 4] for
historical remarks). By doing so, it bridges the gap between higher-order formalisms and their
implementations, and has resulted in several practical tools. For example, [191] proposes a
calculus for explicit substitution whose implementation allows us to define executable formal
representations of many logical systems featuring binders with a close-to-zero representational
distance.

Term-generic logic (TGL), as we have seen in Section 2.12, is a FOL variant, where
the set of terms T is generic and given as a parameter that exports two operations—free
variables and capture-avoiding substitution—satisfying certain properties [40, Definition 2.1].
TGL formulas are then defined constructively as in FOL, from predicates π(e1, . . . , en) and
equations e1 = e2, to compound formulas built using ∧, ¬, and ∃, with the important
exception that e1, . . . , en are not constructive terms like in FOL, but generic terms in T . In
the case of λ-calculus, the set of λ-expressions Λ can be proved to satisfy the definition of
a generic term set in TGL, so we can instantiate TGL by Λ. The binding behavior of λ is
inherited automatically, through the T instance. The metalevel of λ-calculus can be defined
by TGL axioms. For example, β-reduction is captured either as an equation or as a relation:

(β, Equation) (λx . e) e′ = e′[e/x] (10.10)

(β, Reduction) reduces
(
(λx . e) e′, e′[e/x]

)
(10.11)

208

where reduces is a binary predicate; (λx . e) e′, e′[e/x] ∈ Λ are generic terms (schemas) that
represent all the concrete instances. TGL has been used to define various systems featuring
bindings. In Section 5.13, we have used TGL as an intermediate to capture other systems
with binders using matching µ-logic.

10.3 EXISTING APPROACHES TO AUTOMATED FIXPOINT REASONING

Here we discuss other approaches to automated fixpoint reasoning and compare them with
our unified proof framework from a methodology point of view.

We were inspired and challenged by work on automation of inductive proofs for separa-
tion logic [26], which resulted in several automatic separation logic provers; see [122] for
those that participated in the recent SL-COMP’19 competition. Since separation logic
is undecidable [192], many provers implement only decision procedures to decidable frag-
ments [27, 116, 117, 128] or incomplete algorithms [113, 114, 115]. There is also work on
decision procedures for other heap logics [193, 194, 195, 196, 197, 198], which achieve full
automation but suffer from lack of expressiveness and generality. It is worth noting that
significant performance improvements can be obtained by incorporating first-order theorem
proving and SMT solvers [123, 124] into separation logic provers [199, 200].

Compared with our unified proof framework, the above provers are specialized to separation
logic reasoning. Some are based on reductions from separation logic formulas to certain
decidable computational domains, such as the satisfiability problem for monadic second-order
logic on graphs with bounded tree width [114]. Others are based on separation logic proof
trees, where the syntax of separation logic has been hardwired in the prover. For example,
most separation logic provers require the following canonical form of separation logic formulas:
φ1 ∗ · · · ∗φn ∧ψ where φ1, . . . , φn are basic spacial formulas built from singleton heaps x 7→ y

or user-defined recursive structures such as list(x), and ψ is a FOL logical constraint. This
built-in separation logic syntax limits the use of these provers to separation logic, even though
the inductive proof rules proposed by the above provers might be more general. The major
advantage of our unified proof framework, which was the motivation fueling our effort, is that
the inductive principle can be applied to any structures, not only those representing heap
structures. In Section 6.2.1, we show the key elements of our proof framework that supports
the fixpoint reasoning for arbitrary structures.

Hoare-style formal verification represents another important but specialized approach to
fixpoint reasoning, where the objects of study are program executions and the properties
to prove are program correctness claims. There is a vast literature on verification tools
based on classical logics and SMT solvers such as Dafny [201], VCC [202] and Verifast [203].

209

To use these tools, the users often need to provide annotations that explicitly express and
manipulate frames, whose proofs are based on user-provided lemmas. The correctness of the
lemmas is either taken for granted or manually proved using an interactive proof assistant
(e.g., [202, Section 6] mentions several tools that are based on Coq [11] or Isabelle [148]).
While it is acceptable for deductive verifiers to take additional annotations and/or program
invariants, the use of manually-proved lemmas is not ideal because it makes the verification
tools not fully automatic.

An interesting approach to formal verification is reachability logic [3], which uses the
operational semantics of a programming language to verify the programs of that language,
using one fixed proof system. In that sense, it shares a similar vision with our unified proof
framework, where the formal semantics of programming languages are defined as the logical
theories and only one proof system is needed to verify all programs written in all languages.
In Sections 2.14, we showed how our proof framework can carry out reachability-style formal
reasoning, and thus support program verification in a unified way.

There is recent work that considers inductive reasoning for more general data structures,
beyond only heap structures [107, 129, 204, 205, 206, 207]. Tac [208] is an automated
theorem prover for a variant of FOL extended with fixpoints that uses the techniques of
focusing to reduce the nondeterminism involved in proof search. [129] proposes Cyclist,
a proof framework that implements a generic notion of cyclic proof as a “design pattern”
about how to do inductive reasoning, which generalize the proof systems of LFP and SL.
In Cyclist, inductive reasoning is achieved not by an explicit induction proof rule, but
implicitly by cyclic proof trees with “back-links”. In contrast, our unified proof framework uses
one fixed logic (matching µ-logic) and relies on an explicit induction proof rule (Knaster

Tarski). Therefore, Cyclist represents a different approach from ours but towards a similar
goal of a unified framework for fixpoint reasoning.

10.4 EXISTING APPROACHES TO TRUSTWORTHY LANGUAGE TOOLS

There has been a lot of effort in providing formal guarantees for programming language tools
such as compilers or deductive verifiers. At a high level, we may identify two approaches. One
approach is to formalize and prove the correctness of the entire tool. For example, CompCert
C [209] is a C compiler that has been formally verified to be exempt from miscompilation
issues. The other approach is to generate proof objects on a case-by-case basis for each run
of the tool. For example, [135] presents the translation validation technique to check the
result of each compilation against the source program and [210] presents an approach where
successful runs of the Boogie verifier are validated using Isabelle proofs. Our work belongs to

210

the second approach, where proof objects are generated for each verification task carried out
using K.

The first approach tends to yield proofs that are more technically involved and does not
work well on an existing tool implementation, and is often conducted on a new implementation
that aims at being correct-by-construction from the beginning. However, once it is done,
it gives the highest formal guarantee for the correctness of the entire tool, once and for
all. Besides CompCert C that we mentioned above, there is also CakeML [211], which is
an implementation of Standard ML [212] that is formally verified in HOL4 [213]. In this
approach, the proof objects are often written and proved in an interactive theorem prover
such as Coq [11] and Isabelle [148], because they provide the expressive power needed to state
the correctness claims, which are often higher-order, in the sense that they are quantified
over all possible programs and/or inputs.

The other “case-by-case” approach generates simpler proof objects and works better on
an existing tool implementation, compared to the above “once-and-for-all” approach. In
this approach, the proof objects only relate the input and output of the language tool in
question, without needing to depend on the actual implementation of the tool. For example,
the technique of translation validation [135] checks the correctness of each compilation of
an optimized compiler, producing a verifying compiler, in contrast to a verified compiler
such as CompCert C. [214] focuses on the certification of equational proofs in membership
equational logic and discusses a related proof synthesis problem, where tools not only need
to certify their explicit deduction steps but also their implicit equational reasoning modulo
axioms such as associativity, commutativity, and unit elements. Recent works applies the
idea to obtaining proof-certifying interpreters and deductive verifiers. For example, [136]
generates proof objects for a language-agnostic interpreter, where each (concrete) execution
of a program is certified by a machine-checkable mathematical proof. [210] generates proof
objects for the intermediate verification language (IVL) Boogie, where each transformation
from programs to their verification conditions is certified. [215] generates proof objects for the
Why3 verifier [216], which is also equipped with an IVL to generate verification conditions.
[217] generates proof objects for the VeriFast verifier for C [218], where each successful
verification run is certified with respect to CompCert’s Clight big step semantics [219]. [220]
is closely related to the Kore intermediate language (introduced in Section 8.3) and proposes
an alternative translation from K to Kore and presents an automatic tool called KaMeLo
from Kore to Dedukti, which is a logical framework based on λΠ-calculus modulo theory
[221].

There have also been works that generate proofs for the decision procedures in SMT solvers
to certify their correctness [152, 153, 222].

211

Both the once-and-for-all and case-by-case approaches provide the same (high) level of
correctness guarantee when it comes to one successful run of the tool. Our work follows the
case-by-case approach, where proof objects are generated for each successful execution or
verification run of K. Since our proof generation method is parametric in the formal semantics
of programming languages, it is language-agnostic.

All the above approaches produce correctness certificates in the form of mathematical
proofs or logical proofs, which are often inductively constructed by a set of proof rules of
a given logic or calculi. In this context, a proof checker is a program that scans/traverses
the mathematical/logical proofs and checks that every proof step has been correctly applied.
Interactive proofs [223, 224] represent an entirely different type of correctness proofs, where
a proof system is a cryptographic protocol between a prover and a verifier, where the prover
can prove to the verifier that certain statement is true. Zero-knowledge proofs [224, 225]
have the additional property that the proofs do not reveal additional information besides
the fact that the said statement is true. Within the last decade, we have witnessed much
development on ZK technologies and their transformation from theory into practice. Some
of these developments, such as zkSNARK [226] and zkSTARK [227], can produce succinct
arguments of knowledge that are significantly smaller than mathematical or logical proofs.

ZK technologies can be used to optimize the sizes of AML proof objects generated for
K, as discussed in Chapters 8 and 9. The idea, which we call Proof of Proof, is to produce
a succinct ZK certificate for the existence of a correct, potentially huge logical proof of a
given theorem. More specifically, let Γ ⊢ φ be any AML theorem of interest, where Γ can
be the formal semantics of a programming language and φ specifies the correctness of an
execution trace of certain program. Using the proof generation techniques in Chapter 8, we
can produce an AML proof object ΠΓ,φ and check it using the AML proof checker:

ProofChecker(Γ, φ,ΠΓ,φ) = true (10.12)

In Equation (10.12), ProofChecker is a small artifact whose essence is a 200-line formalization
of AML in Metamath, while ΠΓ,φ can be arbitrarily large. How can we produce a smaller
argument for the AML theorem Γ ⊢ φ (and thus for the correctness of an execution trace of
the given program)? The key idea is to turn ProofChecker into a ZK circuit and produce a
ZK certificate for the following statement, which is weaker than Equation (10.12):

∃Π . ProofChecker(Γ, φ,Π) = true (10.13)

In other words, we hide the actual AML proof object ΠΓ,φ because it is unnecessary to certify

212

that Γ ⊢ φ holds. Indeed, it suffices to show the existence of such a proof object. At the time
of writing, there has been preliminary work [228] converting ProofChecker to a ZK circuit
by re-implementing Metamath in Rust and running it in the RISC Zero zkVM [229], which
produces a succinct zk-STARK certificate that an AML proof object for a given claim exists.

213

Chapter 11: CONCLUSION

Formal programming language semantics should be a unique opportunity to give birth to a
better language, not a cumbersome postmortem activity. Moreover, language implementations
and analysis tools should be automatically generated from the formal semantics at no
additional cost, in a correct-by-construction manner. Anything else is less than ideal and
comes with technical debt. Such is the vision of a unifying language framework, and it is
pursued by the presented work, where we focus on studying the mathematical and logical
foundation of the said unifying language framework.

Our main contribution is the proposal of matching µ-logic as a unifying logic for specifying
and reasoning about programs and programming languages. We have studied the proof
theory and expressive power of matching µ-logic. We have showed that many important
logics, calculi, and foundations of computations, especially those featuring fixpoints, can be
defined as matching µ-logic theories. These includes FOL with least fixpoints, second-order
logic, initial algebra semantics, separation logic with recursive predicates, modal µ-calculus,
various temporal logics, dynamic logic, reachability logic, λ-calculus, and type systems. Thus,
matching µ-logic gives us a unifying foundation to define all these logics and regain their
expressive and reasoning power. We have also proved the soundness theorem of matching
µ-logic and proved a few important completeness results for the fragment without set variables
or fixpoints.

We have studied automated fixpoint reasoning and proposed a set of high-level automated
proof rules for matching µ-logic. The key observation there is that we can have a unifying
automated proof framework for fixpoint reasoning, where proofs are carried out using a fixed
set of higher-level proof rules/strategies that accomplish various forms of formal reasoning
for matching µ-logic, which are independent of the underlying theory. Then, these proof
rules/strategies can be instantiated by a theory that defines a logic for a particular domain,
and we obtain a specialized prover for the said domain. Our promising experimental results
show that it is interesting to see how far we can go with this vision of a unifying proof
framework.

We have proposed applicative matching µ-logic (AML) as a simple instance of matching
µ-logic that retains all of its expressive power, and implemented a proof checker for AML.
Formal reasoning carried out at the level of matching µ-logic can be automatically translated
to AML for efficient proof checking. We have showed that AML has the same expressive
power as matching µ-logic despite it being much more simpler. AML represents a different
methodology, where we assume the minimal and simplest foundation, upon which we define

214

theories that build more complex mathematical instruments and structures.
Finally, we put everything together and have studied proof-certifying program execution and

formal verification by implementing proof generation procedures for a language-independent
interpreter and a language-independent formal verifier of the K framework. The key idea
is based on translation validation, where we prove the correctness of each individual task
that K does, based on the proof system of matching µ-logic and an encoding of programming
language semantics in K into matching µ-logic theories. This way, the correctness of program
execution or formal verification is reduced to checking the corresponding AML proof objects
using its proof checker. Our approach is directly based on K and its logical foundation AML,
so it is faithful to the real K implementation because proof objects are generated from proof
parameters, which include all execution snapshots and the actual rewriting information,
provided by K. It is also practical because proof objects are generated for each language task
that K does, on a case-by-case bases, thus avoiding the verification of the entire K.

We hope to have demonstrated the feasibility of using matching µ-logic as a unifying
foundation for programming, where programming languages can be defined as matching µ-
logic theories and language tools can be specified by matching µ-logic theorems. Correctness
of language tools can be reduced to generating the proof objects for the corresponding
theorems and checking them using a small proof checker. This work represents an important
step towards our ultimate vision, where correctness of any computation done by any tool of
any programming language is reduced to correctness of one type of computation that is proof
checking, done by one tool that is the proof checker. This way, we shall be able to achieve
assured trust in computation, like never before.

215

References

[1] “K Framework Tools,” https://github.com/runtimeverification/k, 2023.

[2] G. Roşu, “Matching logic,” Logical Methods in Computer Science, vol. 13, no. 4, pp.
1–61, 2017.

[3] A. Ştefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu, “Semantics-based program
verifiers for all languages,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’16). ACM, 2016, pp. 74–91.

[4] G. Rosu, “K—a semantic framework for programming languages and formal analysis
tools,” in Dependable Software Systems Engineering. IOS Press, 2017.

[5] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the undefinedness of C,” in Proceedings
of the 36th annual ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15). Oregon, USA: ACM, 2015, pp. 336–345.

[6] D. Bogdănaş and G. Roşu, “K-Java: a complete semantics of Java,” in Proceedings of
the 42nd Symposium on Principles of Programming Languages (POPL’15). Mumbai,
India: ACM, 2015, pp. 445–456.

[7] D. Park, A. Ştefănescu, and G. Roşu, “KJS: a complete formal semantics of JavaScript,”
in Proceedings of the 36th annual ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’15). Oregon, USA: ACM, 2015, pp. 346–356.

[8] D. Guth, “A formal semantics of Python 3.3,” M.S. thesis, University of Illinois Urbana-
Champaign, Aug. 2013.

[9] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth, B. Moore,
Y. Zhang, D. Park, A. Ştefănescu, and G. Roşu, “KEVM: a complete semantics of
the Ethereum virtual machine,” in Proceedings of the 2018 IEEE Computer Security
Foundations Symposium (CSF’18). Oxford, UK: IEEE, 2018, pp. 204–217.

[10] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu, “A complete formal
semantics of x86-64 user-level instruction set architecture,” in Proceedings of the 40th

ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’19). Phoenix, Arizona, USA: ACM, 2019, pp. 1133–1148.

[11] “The Coq proof assistant,” https://github.com/runtimeverification/k, 2023.

[12] G. Roşu, A. Ştefănescu, Ş. Ciobâcă, and B. M. Moore, “One-path reachability logic,” in
Proceedings of the 28th Symposium on Logic in Computer Science (LICS’13). IEEE,
2013, pp. 358–367.

216

https://github.com/runtimeverification/k
https://github.com/runtimeverification/k

[13] N. D. Megill and D. A. Wheeler, Metamath: a computer language for mathematical
proofs. Morrisville, North Carolina, USA: Lulu Press, 2019.

[14] V. Pratt, “Semantical consideration on Floyd-Hoare logic,” in Proceedings of the 17th

Annual Symposium on Foundations of Computer Science (SFCS’76). IEEE, 1976, pp.
109–121.

[15] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of
the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[16] D. Scott, “Domains for denotational semantics,” in International Colloquium on Au-
tomata, Languages, and Programming, Springer. Berlin Heidelberg, Germany: Springer,
1982, pp. 577–610.

[17] G. D. Plotkin, “A structural approach to operational semantics,” Journal of Logic &
Algebraic Programming, vol. 60-61, pp. 17–139, 2004.

[18] G. Kahn, “Natural semantics,” in Proceedings of the 4th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS’87), vol. 247, Passau, Germany, 1987, pp.
22–39.

[19] P. D. Mosses, “Modular structural operational semantics,” Journal of Logic & Algebraic
Programming, vol. 60-61, pp. 195–228, 2004.

[20] G. Berry and G. Boudol, “The chemical abstract machine,” Theoretical Computer
Science, vol. 96, no. 1, pp. 217–248, 1992.

[21] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,” Pacific Journal
of Mathematics, vol. 5, no. 2, pp. 285–309, 1955.

[22] A. G. Hamilton, Logic for mathematicians. Cambridge, UK: Cambridge University
Press, 1978.

[23] J. A. Goguen and J. Meseguer, “Completeness of many-sorted equational logic,” Houston
Journal of Mathematics, vol. 11, no. 3, pp. 307–334, 1985.

[24] J. Meseguer and J. A. Goguen, “Initiality, induction, and computability,” in Algebraic
Methods in Semantics. New York, USA: Cambridge University Press, 1985, pp.
459–543.

[25] R. M. Burstall and J. A. Goguen, Algebras, theories and freeness: an introduction
for computer scientists, ser. NATO Advanced Study Institutes Series (Series C —
Mathematical and Physical Sciences). Dordrecht, Netherlands: Springer, 1982, vol. 91,
ch. 11, pp. 329–349. [Online]. Available: https://doi.org/10.1007/978-94-009-7893-5_11

[26] J. C. Reynolds, “Separation logic: a logic for shared mutable data structures,” in Pro-
ceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS’02).
Copenhagen, Denmark: IEEE, 2002, pp. 55–74.

217

https://doi.org/10.1007/978-94-009-7893-5_11

[27] J. Brotherston, C. Fuhs, J. A. N. Pérez, and N. Gorogiannis, “A decision procedure for
satisfiability in separation logic with inductive predicates,” in Proceedings of the Joint
Meeting of the 23rd EACSL Annual Conference on Computer Science Logic (CSL’14)
and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’14),
no. 25. New York, NY, USA: ACM, 2014, pp. 1–10.

[28] P. Blackburn, M. d. Rijke, and Y. Venema, Modal logic. New York, NY, USA:
Cambridge University Press, 2001.

[29] D. Kozen, “Results on the propositional µ-calculus,” Theoretical Computer Science,
vol. 27, no. 3, pp. 333–354, 1983.

[30] I. Walukiewicz, “Completeness of Kozen’s axiomatisation of the propositional µ-calculus,”
Information and Computation, vol. 157, no. 1-2, pp. 142–182, 2000.

[31] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th Annual Sympo-
sium on Foundations of Computer Science (SFCS’77). IEEE, 1977, pp. 46–57.

[32] G. Roşu, “Finite-trace linear temporal logic: coinductive completeness,” Formal Methods
in System Design, vol. 53, no. 1, pp. 138–163, 2018.

[33] M. Reynolds, “An axiomatization of full computation tree logic,” Journal of Symbolic
Logic, vol. 66, no. 3, pp. 1011–1057, 2001.

[34] M. J. Fischer and R. E. Ladner, “Propositional dynamic logic of regular programs,”
Journal of Computer and System Sciences, vol. 18, no. 2, pp. 194–211, 1979.

[35] D. Harel, “Dynamic logic,” in Handbook of Philosophical Logic. Springer, 1984, vol.
165, pp. 497–604.

[36] D. Harel, J. Tiuryn, and D. Kozen, Dynamic logic. MIT Press, 2000.

[37] A. Church, The calculi of lambda-conversion. Princeton, New Jersey, USA: Princeton
University Press, 1941.

[38] H. Barendregt, The lambda calculus, its syntax and semantics, ser. Studies in Logic.
London, UK: College Publications, 1984.

[39] C. P. J. Koymans, “Models of the lambda calculus,” Information and Control, vol. 52,
pp. 306–332, 1982.

[40] A. Popescu and G. Roşu, “Term-generic logic,” Theoretical Computer Science, vol. 577,
pp. 1–24, 2015.

[41] F. Lucio-Carrasco and A. Gavilanes-Franco, “A first order logic for partial functions,” in
Proceedings of the 6th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’89). Paderborn, Germany: Springer, 1989, pp. 47–58.

[42] A. Fiedler, “Deduction in matching logic,” M.S. thesis, Masaryk University, 2022.

218

[43] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, J. Meseguer,
R. Rubio, and C. Talcott, Maude manual, SRI International, 2023.

[44] J. R. Shoenfield, Mathematical logic. Addison-Wesley Pub. Co, 1967.

[45] I. Leustean, N. Moanga, and T. F. Şerbănuţă, “Many-sorted hybrid modal languages,”
Journal of Logical and Algebraic Methods in Programming, vol. 120, 2021.

[46] P. Blackburn and M. Tzakova, “Hybrid completeness,” Logic Journal of the IGPL,
vol. 6, no. 4, pp. 625–650, 1998.

[47] X. Chen and G. Roşu, “Matching µ-logic,” in Proceedings of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS’19). Vancouver, Canada: IEEE,
2019, pp. 1–13.

[48] M. Schönfinkel, “Über die bausteine der mathematischen logik,” Mathematische annalen,
vol. 92, no. 3-4, pp. 305–316, 1924.

[49] H. B. Curry, Combinatory logic. Amsterdam: North-Holland Pub. Co., 1958.

[50] A. Church, “A formulation of the simple theory of types,” The Journal of Symbolic
Logic, vol. 5, no. 2, pp. 56–68, 1940.

[51] A. I. Malc’ev, “Axiomatizable classes of locally free algebras of various type,” The
Metamathematics of Algebraic Systems: Collected Papers, vol. 1, no. 1, pp. 262–281,
1936.

[52] L. Kovács, S. Robillard, and A. Voronkov, “Coming to terms with quantified reasoning,”
in Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL’17). Paris, France: ACM, 2017, pp. 260–270.

[53] L. Löwenheim, “Über möglichkeiten im relativkalkül,” Mathematische Annalen, vol. 76,
no. 4, pp. 447–470, 1915.

[54] R. M. Burstall, “Proving properties of programs by structural induction,” The Computer
Journal, vol. 12, no. 1, pp. 41–48, 1969.

[55] J. McCarthy, “A basis for a mathematical theory of computation,” in Computer
Programming and Formal Systems, ser. Studies in Logic and the Foundations of
Mathematics, P. Braffort and D. Hirschberg, Eds. Amsterdam, The Netherlands:
Elsevier, 1963, vol. 35, pp. 33–70.

[56] D. C. Cooper, “The equivalence of certain computations,” The Computer Journal, vol. 9,
no. 1, pp. 45–52, May 1966.

[57] J. Mccarthy and J. Painter, “Correctness of a compiler for arithmetic expressions,”
in Proceedings of Symposiain Applied Mathematics, vol. 19. Rhode Island, USA:
American Mathematical Society, 1967, pp. 33–41.

219

[58] R. M. Burstall, “Semantics of assignment,” Machine Intelligence, vol. 2, pp. 3–20, 1968.

[59] J. A. Painter, “Semantic correctness of a compiler for an Algol-like language,” Stanford
Artificial Intelligence Memo. No. 44, vol. 1, no. 1, pp. 1–260, 1967.

[60] D. M. Kaplan, “Correctness of a compiler for Algol-like programs,” Stanford Artificial
Intelligence Memo No. 48, vol. 48, no. 1, pp. 1–35, 1967.

[61] H. Comon, “Inductionless induction,” in Handbook of automated reasoning, A. Robinson
and A. Voronkov, Eds. Amsterdam: North Holland, 2001, ch. 14, pp. 913–962.

[62] J. Meseguer, “Twenty years of rewriting logic,” The Journal of Logic and Algebraic
Programming, vol. 81, no. 7–8, pp. 721–781, 2012.

[63] J. Hendrix, J. Meseguer, and H. Ohsaki, “A sufficient completeness checker for linear
order-sorted specifications modulo axioms,” in Automated Reasoning, U. Furbach and
N. Shankar, Eds. Berlin, Heidelberg: Springer, 2006, pp. 151–155.

[64] J. Hendrix and J. Meseguer, “On the completeness of context-sensitive order-sorted
specifications,” in Term Rewriting and Applications, F. Baader, Ed. Berlin, Heidelberg:
Springer, 2007, pp. 229–245.

[65] C. Rocha and J. Meseguer, “Constructors, sufficient completeness, and deadlock freedom
of rewrite theories,” in Logic for Programming, Artificial Intelligence, and Reasoning,
C. G. Fermüller and A. Voronkov, Eds. Berlin, Heidelberg: Springer, 2010, pp.
594–609.

[66] J. D. Hendrix, “Decision procedures for equationally based reasoning,” Ph.D. disserta-
tion, University of Illinois Urbana-Champaign, 2008.

[67] H. Comon, M. D. R. Gilleron, F. Jacquemard, D. Lugiez, C. Loding, S. Tison, and
M. Tommasi, “Tree automata techniques and applications,” 2008.

[68] J.-P. Jouannaud and E. Kounalis, “Automatic proofs by induction in theories without
constructors,” Information and Computation, vol. 82, no. 1, pp. 1–33, 1989.

[69] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud, Software
engineering with OBJ: algebraic specification in action. Massachusetts, USA: Springer,
2000, ch. Introducing OBJ, pp. 3–167.

[70] R. Diaconescu and K. Futatsugi, CafeOBJ report: the language, proof techniques,
and methodologies for object-oriented algebraic specification, ser. AMAST Series in
Computing. Singapore: World Scientific, 1998, vol. 6.

[71] G. Lenzi, “The modal µ-calculus: a survey,” Task quarterly, vol. 9, no. 3, pp. 293–316,
2005.

220

[72] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems,” in Hybrid
systems. Springer, 1993, pp. 209–229.

[73] E. A. Lee, “Cyber physical systems: design challenges,” in Proceedings of the 11th IEEE
Symposium on Object Oriented Real-Time Distributed Computing (ISORC’08). IEEE,
2008, pp. 363–369.

[74] P. Blackburn, J. van Benthem, and F. Wolter, Eds., Handbook of modal logic, 1st ed.
Elsevier, 2006, vol. 3.

[75] G. Hasenjaeger, “Eine bemerkung zu Henkin’s beweis für die vollständigkeit des
prädikatenkalküls der ersten stufe,” The Journal of Symbolic Logic, vol. 18, no. 1,
pp. 42–48, 1953.

[76] R. W. Quackenbush, “Completeness theorems for universal and implicational logics of
algebras via congruences,” Proceedings of the American Mathematical Society, vol. 103,
no. 4, pp. 1015–1021, 1988.

[77] J. Bell and M. Machover, A course in mathematical logic. Amsterdam, Netherlands:
North Holland, 1977.

[78] C. Berline, “Graph models of λ-calculus at work, and variations,” Mathematical Struc-
tures in Computer Science, vol. 16, no. 2, pp. 185–221, 2006.

[79] G. Manzonetto, “Models and theories of lambda calculus,” Ph.D. dissertation, Università
Ca’ Foscari di Venezia, 2008.

[80] D. Scott, “Continuous lattices,” in Toposes, Algebraic Geometry and Logic. Berlin,
Heidelberg: Springer, 1972, pp. 97–136.

[81] G. Berry, “Stable models of typed λ-calculi,” in Automata, Languages and Programming.
Berlin, Heidelberg: Springer, 1978, pp. 72–89.

[82] J.-Y. Girard, “The system F of variable types, fifteen years later,” Theoretical Computer
Science, vol. 45, pp. 159–192, 1986.

[83] A. Bucciarelli and T. Ehrhard, “A theory of sequentiality,” Theoretical Computer
Science, vol. 113, no. 2, pp. 273–291, 1993.

[84] A. Bucciarelli and A. Salibra, “The sensible graph theories of lambda calculus,” in Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04).
Turku, Finland: IEEE, July 2004, pp. 276–285.

[85] J.-Y. Girard, “Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur,” Ph.D. dissertation, Paris Diderot University, Paris, France, 1972.

[86] J. C. Reynolds, “Towards a theory of type structure,” in Programming Symposium.
Berlin, Heidelberg: Springer, 1974, pp. 408–425.

221

[87] H. Barendregt, “Lambda calculi with types,” in Handbook of Logic in Computer Science.
UK: Oxford University Press, 1993, ch. 2, pp. 117–309.

[88] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes (part 1),” Infor-
mation and Computation, vol. 100, no. 1, pp. 1–40, 1992.

[89] A. Popescu and G. Roşu, “Term-generic logic (extended technical report),” Technische
Universitat Munchen, University of Illinois Urbana-Champaign, Tech. Rep., 2013.

[90] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov, “An extension of system F with
subtyping,” Information and Computation, vol. 109, no. 1, pp. 4–56, 1994.

[91] J.-Y. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, no. 1, pp. 1–101,
1987.

[92] P. Lincoln and J. Mitchell, “Operational aspects of linear lambda calculus,” in Pro-
ceedings of the 7th Annual IEEE Symposium on Logic in Computer Science (LICS’92).
California, USA: IEEE, June 1992, pp. 235–246.

[93] P. Martin-Löf, Twenty five years of constructive type theory, ser. Oxford Logic Guides
Book. Oxford, UK: Oxford University Press, 1998, vol. 36, ch. An intuitionistic theory
of types, pp. 127–172.

[94] J. Meseguer, “General logics,” in Logic Colloquium’87, ser. Studies in Logic and the
Foundations of Mathematics, H.-D. Ebbinghaus, J. Fernandez-Prida, M. Garrido,
D. Lascar, and M. R. Artalejo, Eds. Elsevier, 1989, vol. 129, pp. 275–329.

[95] J. A. Goguen and G. Rosu, “Institution morphisms,” Formal Asp. Comput., vol. 13, pp.
274–307, 2002.

[96] J. A. Goguen and R. M. Burstall, “Institutions: abstract model theory for specification
and programming,” Journal of the ACM, vol. 39, no. 1, pp. 95–146, 1992.

[97] X. Chen, D. Lucanu, and G. Roşu, “Initial algebra semantics in matching logic,” Uni-
versity of Illinois Urbana-Champaign, Tech. Rep. http://hdl.handle.net/2142/107781,
July 2020.

[98] M. Grohe, “Existential least fixed-point logic and its relatives,” Journal of Logic and
Computation, vol. 7, no. 2, pp. 205–228 – 228, 1997.

[99] S. Kreutzer, “Pure and applied fixed-point logics,” Ph.D. dissertation, RWTH Aachen
University, 2002.

[100] L. Libkin, Elements of finite model theory. Springer, Aug. 2004.

[101] P. Madhusudan, X. Qiu, and A. Stefanescu, “Recursive proofs for inductive tree data-
structures,” in Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’12). ACM, 2012, pp. 123–136.

222

[102] X. Qiu, P. Garg, A. Ştefănescu, and P. Madhusudan, “Natural proofs for structure,
data, and separation,” in Proceedings of the 34th annual ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’13). ACM, 2013, pp.
231–242.

[103] E. Pek, X. Qiu, and P. Madhusudan, “Natural proofs for data structure manipulation
in C using separation logic,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14. New York, NY,
USA: Association for Computing Machinery, 2014, pp. 440–451.

[104] A. Murali, L. Peña, C. Löding, and P. Madhusudan, “A first-order logic with frames,”
in Programming Languages and Systems, P. Müller, Ed. Cham: Springer International
Publishing, 2020, pp. 515–543.

[105] A. Murali, L. Peña, E. Blanchard, C. Löding, and P. Madhusudan, “Model-guided
synthesis of inductive lemmas for FOL with least fixpoints,” Proc. ACM Program.
Lang., vol. 6, no. OOPSLA2, Oct. 2022.

[106] A. Blass and Y. Gurevich, “The underlying logic of Hoare logic,” The Logic in Computer
Science Column, 2000.

[107] C. Löding, M. Parthasarathy, and L. Peña, “Foundations for natural proofs and
quantifier instantiation,” Proceedings of the ACM on Programming Languages, vol. 2,
no. 10, pp. 1–30, 2017.

[108] J. F. A. K. V. Benthem, “Two simple incomplete modal logics,” Theoria, vol. 44, no. 1,
pp. 25–37, Feb. 1978.

[109] J. Goguen, J. Thatcher, E. Wagner, and J. Wright, “Initial algebra semantics and
continuous algebras,” Journal of the ACM, vol. 24, no. 1, pp. 68–95, 1977.

[110] A. Pitts, “Construction of the initial algebra for a strictly positive endofunctor on Set
using uniqueness of identity proofs, function extensionality, quotients types and sized
types,” www.cl.cam.ac.uk/users/amp12/agda/initial-T-algebras., Nov. 2019.

[111] M. van den Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser, “The
ASF+SDF meta-environment: a component-based language development environment,”
Electronic Notes in Theoretical Computer Science, vol. 44, no. 2, pp. 3–8, 2001.

[112] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. D. Mosses, D. Sannella,
and A. Tarlecki, “CASL: the common algebraic specification language,” Journal of
Theoretical Computer Science, vol. 286, no. 2, pp. 153–196, 2002, current trends in
Algebraic Development Techniques.

[113] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Symbolic execution with separation logic,”
in Proceedings of the 3rd Asian conference on Programming Languages and Systems
(APLAS’05), vol. 3780. Tsukuba, Japan: Springer, Nov. 2005, pp. 52–68.

223

www.cl.cam.ac.uk/users/amp12/agda/initial-T-algebras

[114] R. Iosif, A. Rogalewicz, and J. Simacek, “The tree width of separation logic with
recursive definitions,” in Proceedings of the 24th International Conference on Automated
Deduction (CADE’13), vol. 7898. Springer, 2013, pp. 21–38.

[115] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin, “Automated verification of shape,
size and bag properties via user-defined predicates in separation logic,” Journal of
Science of Computer Programming, vol. 77, no. 9, pp. 1006–1036, 2012.

[116] J. Berdine, C. Calcagno, and P. W. O’Hearn, “A decidable fragment of separation
logic,” in Proceedings of the 24th International Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’04), vol. 3328. Springer, 2004,
pp. 97–109.

[117] J. Katelaan, C. Matheja, and F. Zuleger, “Effective entailment checking for separation
logic with inductive definitions,” in Tools and Algorithms for the Construction and
Analysis of Systems, T. Vojnar and L. Zhang, Eds. Cham: Springer International
Publishing, 2019, pp. 319–336.

[118] D. Lucanu and G. Roşu, “CIRC: a circular coinductive prover,” in CALCO, 2007, pp.
372–378.

[119] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Softw. Eng., vol. 23, no. 5,
pp. 279–295, 1997.

[120] X. Chen, M.-T. Trinh, N. Rodrigues, L. Peña, and G. Roşu, “Towards a unified proof
framework for automated fixpoint reasoning using matching logic,” in Proceedings of
OOPSLA. ACM/IEEE, Nov. 2020, pp. 1–29.

[121] Z. Ésik, “Completeness of Park induction,” Theoretical Computer Science, vol. 177,
no. 1, pp. 217–283, 1997.

[122] M. Sighireanu, J. A. Navarro Pérez, A. Rybalchenko, N. Gorogiannis, R. Iosif,
A. Reynolds, C. Serban, J. Katelaan, C. Matheja, T. Noll, F. Zuleger, W.-N. Chin,
Q. L. Le, Q.-T. Ta, T.-C. Le, T.-T. Nguyen, S.-C. Khoo, M. Cyprian, A. Rogalewicz,
T. Vojnar, C. Enea, O. Lengal, C. Gao, and Z. Wu, “SL-COMP: competition of solvers
for separation logic,” in Tools and Algorithms for the Construction and Analysis of
Systems, D. Beyer, M. Huisman, F. Kordon, and B. Steffen, Eds. Cham: Springer
International Publishing, 2019, pp. 116–132.

[123] L. De Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Proceedings of the 14th

International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’08). Springer, 2008, pp. 337–340.

[124] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds,
and C. Tinelli, “CVC4,” in Proceedings of the 23rd International Conference on Computer
Aided Verification (CAV’11). Berlin, Heidelberg: Springer, 2011, pp. 171–177.

224

[125] W. W. Boone, “The word problem,” Proceedings of the National Academy of Sciences,
vol. 44, no. 10, pp. 1061–1065, 1958.

[126] R. Goldblatt, Logics of Time and Computation, 2nd ed., ser. CSLI Lecture Notes.
Stanford, CA: Center for the Study of Language and Information, 1992, no. 7.

[127] O. Lichtenstein and A. Pnueli, “Propositional temporal logics: decidability and com-
pleteness.” Logic Journal of the IGPL, vol. 8, no. 1, pp. 55–85, 2000.

[128] C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar, “Compositional entailment checking
for a fragment of separation logic,” Formal Methods in System Design, vol. 51, no. 3,
pp. 575–607, Dec. 2017.

[129] J. Brotherston, N. Gorogiannis, and R. L. Petersen, “A generic cyclic theorem prover,”
in Programming Languages and Systems, R. Jhala and A. Igarashi, Eds. Kyoto, Japan:
Springer, 2012, pp. 350–367.

[130] T. F. Şerbănuţă and G. Roşu, “A truly concurrent semantics for the K framework based
on graph transformations,” in Proceedings of the 6th International Conference on Graph
Transformation (ICGT’12). Bremen, Germany: Springer, 2012, pp. 294–310.

[131] L. Li and E. Gunter, “IsaK-static A complete static semantics of K,” in Formal Aspects
of Component Software. Springer, 2018, pp. 196–215.

[132] B. Moore, L. Peña, and G. Roşu, “Program verification by coinduction,” in Proceedings
of the 27th European Symposium on Programming (ESOP’18). Springer, 2018, pp.
589–618.

[133] J. Goguen and J. Meseguer, “Order-sorted algebra, part I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations,” Theoretical Computer
Science, vol. 105, no. 2, pp. 217–273, 1992.

[134] T. Nelson, D. Dougherty, K. Fisler, and S. Krishnamurthi, “On the finite model property
in order-sorted logic,” Worcester Polytechnic Institute, Brown University, Tech. Rep.,
2010.

[135] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in Tools and Algorithms
for the Construction and Analysis of Systems, B. Steffen, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 151–166.

[136] X. Chen, Z. Lin, M.-T. Trinh, and G. Roşu, “Generating proof certificates for a language-
agnostic deductive program verifier,” in Proceedings of the 33rd International Conference
on Computer-Aided Verification (CAV’21). Virtual: ACM, July 2021.

[137] F. Durán and H. Garavel, “The rewrite engines competitions: a RECtrospective,”
in Tools and Algorithms for the Construction and Analysis of Systems, D. Beyer,
M. Huisman, F. Kordon, and B. Steffen, Eds. Cham: Springer International Publishing,
2019, pp. 93–100.

225

[138] “Matching logic proof checker,” https://github.com/kframework/proof-generation/blob/
main/theory/matching-logic.mm, 2023.

[139] Z. Lin, X. Chen, M.-T. Trinh, J. Wang, and G. Roşu, “Towards a trustworthy semantics-
based language framework via proof generation,” in Proceedings of OOPSLA, vol. 7,
no. 77. ACM, Apr. 2023.

[140] G. Roşu, A. Ştefănescu, Ştefan Ciobâcă, and B. M. Moore, “Reachability logic,” Uni-
versity of Illinois Urbana-Champaign, Tech. Rep., July 2012.

[141] SV-COMP, “Benchmark for SV-COMP,” https://gitlab.com/sosy-lab/benchmarking/
sv-benchmarks, 2021.

[142] S. O’Rear and M. Carneiro, “Metamath verifier in rust,” https://github.com/sorear/
smetamath-rs, 2019.

[143] “Metamath proof checker in Rust,” https://github.com/kframework/rust-metamath,
2023.

[144] G. D. Plotkin, “LCF considered as a programming language,” Theoretical computer
science, vol. 5, no. 3, pp. 223–255, 1977.

[145] R. Guy, Unsolved problems in number theory. Berlin, Heidelberg: Springer Science &
Business Media, 2004, vol. 1.

[146] “XZ utils,” https://tukaani.org/xz/, 2021.

[147] R. Levien and D. A. Wheeler, “Metamath verifier in Python,” https://github.com/
david-a-wheeler/mmverify.py, 2019.

[148] “Isabelle,” https://isabelle.in.tum.de/, 2023.

[149] Coq Team, “Coq github repository,” https://github.com/coq/coq, 2021.

[150] M. Carneiro, “Metamath zero: designing a theorem prover prover,” in International
Conference on Intelligent Computer Mathematics. Springer, 2020, pp. 71–88.

[151] “The Kore language,” https://github.com/kframework/kore, 2023.

[152] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli, “SMT proof checking using
a logical framework,” Formal Methods in System Design, vol. 42, no. 1, pp. 91–118,
2013.

[153] C. Barrett, L. De Moura, and P. Fontaine, “Proofs in satisfiability modulo theories,”
All about proofs, Proofs for all, vol. 55, no. 1, pp. 23–44, 2015.

[154] A. Ştefănescu, c. Ciobâcă, R. Mereuţă, B. M. Moore, T. F. Şerbănuţă, and G. Roşu,
“All-path reachability logic,” in Proceedings of the Joint 25th International Conference
on Rewriting Techniques and Applications and 12th International Conference on Typed
Lambda Calculi and Applications (RTA-TLCA’14), vol. 8560. Springer, 2014, pp.
425–440.

226

https://github.com/kframework/proof-generation/blob/main/theory/matching-logic.mm
https://github.com/kframework/proof-generation/blob/main/theory/matching-logic.mm
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/sorear/smetamath-rs
https://github.com/sorear/smetamath-rs
https://github.com/kframework/rust-metamath
https://tukaani.org/xz/
https://github.com/david-a-wheeler/mmverify.py
https://github.com/david-a-wheeler/mmverify.py
https://isabelle.in.tum.de/
https://github.com/coq/coq
https://github.com/kframework/kore

[155] Y. Zhang and B. Xu, “A survey of semantic description frameworks for programming
languages,” ACM SIGPLAN Notices, vol. 39, no. 3, pp. 14–30, 2004.

[156] P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual,
“CENTAUR: The system,” in Proceedings of the 3rd ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments (SDE’88).
ACM, 1988, pp. 14–24.

[157] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strniša, “Ott:
Effective tool support for the working semanticist,” Journal of Functional Programming,
vol. 20, no. 1, pp. 71–122, 2010.

[158] L. T. van Binsbergen, N. Sculthorpe, and P. D. Mosses, “Tool support for component-
based semantics,” in Companion Proceedings of the 15th International Conference on
Modularity. ACM, 2016, pp. 8–11.

[159] M. van den Brand, J. Heering, P. Klint, and P. A. Olivier, “Compiling language
definitions: The ASF+SDF compiler,” ACM Transactions on Programming Languages
and Systems (TOPLAS’02), vol. 24, no. 4, pp. 334–368, 2002.

[160] E. Visser, “Syntax definition for language prototyping,” Ph.D. dissertation, University
of Amsterdam, 1997.

[161] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach, “Building program optimizers with rewrit-
ing strategies,” in Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming (ICFP’98). ACM, 1998, pp. 13–26.

[162] J. Smits and E. Visser, “FlowSpec: declarative dataflow analysis specification,” in
Proceedings of the 10th ACM SIGPLAN International Conference on Software Language
Engineering (SLE’17). ACM, 2017, pp. 221–231.

[163] M. Felleisen, R. B. Findler, and M. Flatt, Semantics engineering with PLT Redex.
MIT Press, 2009.

[164] E. Torlak and R. Bodik, “A lightweight symbolic virtual machine for solver-aided host
languages,” in Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’14). New York, NY, USA: ACM, 2014,
pp. 530–541.

[165] J. Bornholt and E. Torlak, “Finding code that explodes under symbolic evaluation,”
Proceedings of the ACM on Programming Languages, vol. 2, no. 149, pp. 1–26, 2018.

[166] N. G. de Bruijn, “Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem,” Indagationes
Mathematicae, vol. 75, no. 5, pp. 381–392, 1972.

[167] A. M. Pitts, “Nominal logic, a first order theory of names and binding,” Information
and Computation, vol. 186, no. 2, pp. 165–193, 2003.

227

[168] F. Pfenning and C. Elliott, “Higher-order abstract syntax,” in Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’88). New York, NY, USA: ACM, 1988, pp. 199–208.

[169] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy, “Explicit substitutions,” Journal of
Functional Programming, vol. 1, no. 4, pp. 375–416, 1991.

[170] J. W. Klop, “Term rewriting systems,” in Handbook of Logic in Computer Science.
USA: Oxford University Press, Inc., 1993, vol. 2, ch. 1, pp. 1–116.

[171] A. M. Pitts, Nominal sets: names and symmetry in computer science, ser. Cambridge
Tracts in Theoretical Computer Science. New York, NY, USA: Cambridge University
Press, 2013.

[172] J. Cheney, “Completeness and Herbrand theorems for nominal logic,” Journal of
Symbolic Logic, vol. 71, no. 1, pp. 299–320, 2006.

[173] J. Cheney, “A simple sequent calculus for nominal logic,” Journal of Logic and Compu-
tation, vol. 26, no. 2, pp. 699–726, 2014.

[174] M. Gabbay and J. Cheney, “A sequent calculus for nominal logic,” in Proceedings of the
19th Annual IEEE Symposium on Logic in Computer Science (LICS’04). Washington,
DC, USA: IEEE, 2004, pp. 139–148.

[175] M. Gabbay and A. Pitts, “A new approach to abstract syntax involving binders,” in
Proceedings of the 14th Symposium on Logic in Computer Science (LICS’19). Trento,
Italy: IEEE, July 1999, pp. 214–224.

[176] A. M. Pitts, “Alpha-structural recursion and induction,” in Theorem Proving in Higher
Order Logics, J. Hurd and T. Melham, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 17–34.

[177] C. Urban, “Nominal techniques in Isabelle/HOL,” Journal of Automated Reasoning,
vol. 40, no. 4, pp. 327–356, May 2008.

[178] M. Gabbay and M. Gabbay, “Representation and duality of the untyped λ-calculus in
nominal lattice and topological semantics, with a proof of topological completeness,”
Annals of Pure and Applied Logic Volume, vol. 168, no. 3, pp. 501–621, Oct. 2017.

[179] M. Ayala-Rincón, W. de Carvalho-Segundo, M. Fernández, and D. Nantes-Sobrinho,
“Nominal C-unification,” in Proceedings of the 27th International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR’17), ser. Lecture Notes in
Computer Science, vol. 10855. Namur, Belgium: Springer International Publishing,
2018, pp. 235–251.

228

[180] M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho, “Nominal narrowing,” in Pro-
ceedings of the 1st International Conference on Formal Structures for Computation and
Deduction (FSCD’16), ser. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 52. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016,
pp. 1–17.

[181] R. Harper, F. Honsell, and G. Plotkin, “A framework for defining logics,” Journal of
the ACM, vol. 40, no. 1, pp. 143–184, 1993.

[182] R. C. McDowell and D. A. Miller, “Reasoning with higher-order abstract syntax in
a logical framework,” ACM Transactions on Computational Logic, vol. 3, no. 1, pp.
80–136, 2002.

[183] L. C. Paulson, “The foundation of a generic theorem prover,” Journal of Automated
Reasoning, vol. 5, no. 3, pp. 363–397, 1989.

[184] A. Felty and A. Momigliano, “Hybrid, a definitional two-level approach to reasoning
with higher-order abstract syntax,” Journal of Automated Reasoning, vol. 48, no. 1, pp.
43–105, 2012.

[185] A. Gacek, D. Miller, and G. Nadathur, “A two-level logic approach to reasoning about
computations,” Journal of Automated Reasoning, vol. 49, no. 2, pp. 241–273, 2012.

[186] M. Fiore and O. Mahmoud, “Second-order algebraic theories,” in Mathematical Founda-
tions of Computer Science 2010, P. Hliněný and A. Kučera, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 368–380.

[187] F. Pfenning and C. Schürmann, “System description: Twelf—a meta-logical framework
for deductive systems,” in Proceedings of the 16th International Conference on Automated
Deduction (CADE 99). Trento, Italy: Springer, 1999, pp. 202–206.

[188] J. Cheney, M. Norrish, and R. Vestergaard, “Formalizing adequacy: a case study for
higher-order abstract syntax,” Journal of Automated Reasoning, vol. 49, no. 2, pp.
209–239, 2012.

[189] D. Kesner, “A theory of explicit substitutions with safe and full composition,” Logical
Methods in Computer Science, vol. 5, no. 3, pp. 1–29, 2009.

[190] C. J. Bloo, “Preservation of termination for explicit substitution,” Ph.D. dissertation,
Technische Universiteit Eindhoven, 1997.

[191] M.-O. Stehr, “CINNI—a generic calculus of explicit substitutions and its application
to λ- ς- and ϕ-calculi,” Electronic Notes in Theoretical Computer Science, vol. 36, pp.
70–92, 2000.

[192] J. Brotherston and M. Kanovich, “Undecidability of propositional separation logic and
its neighbours,” Journal of the ACM, vol. 61, no. 2, Apr. 2014.

229

[193] Z. Rakamarić, J. Bingham, and A. J. Hu, “An inference-rule-based decision procedure
for verification of heap-manipulating programs with mutable data and cyclic data
structures,” in Proceedings of the 8th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’07), vol. 4349. California, USA:
Springer, Jan. 2007, pp. 106–121.

[194] Z. Rakamarić, R. Bruttomesso, A. J. Hu, and A. Cimatti, “Verifying heap-manipulating
programs in an SMT framework,” in Proceedings of the 5th International Symposium
on Automated Technology for Verification and Analysis (ATVA’07), vol. 4762. Tokyo,
Japan: Springer, Oct. 2007, pp. 237–252.

[195] S. Lahiri and S. Qadeer, “Back to the future: revisiting precise program verification using
SMT solvers,” in Proceedings of the 35th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’08). ACM, 2008, pp. 171–182.

[196] S. Ranise and C. Zarba, “A theory of singly-linked lists and its extensible decision
procedure,” in Proceedings of the 4th IEEE International Conference on Software
Engineering and Formal Methods (SEFM’06). IEEE, 2006, pp. 206–215.

[197] A. Bouajjani, C. Drăgoi, C. Enea, and M. Sighireanu, “A logic-based framework for
reasoning about composite data structures,” in Proceedings of the 20th International
Conference on Concurrency Theory (CONCUR’09), vol. 5710. Springer, 2009, pp.
178–195.

[198] N. Bjørner and J. Hendrix, “Linear functional fixed-points,” in Proceedings of the
21st International Conference on Computer Aided Verification (CAV’09), vol. 5643.
Springer, 2009, pp. 124–139.

[199] J. A. N. Pérez and A. Rybalchenko, “Separation logic + superposition calculus =
heap theorem prover,” in Proceedings of the 32nd annual ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’11). ACM, 2011, pp.
556–566.

[200] R. Piskac, T. Wies, and D. Zufferey, “Automating separation logic using SMT,” in Pro-
ceedings of the 25th International Conference on Computer Aided Verification (CAV’13),
vol. 8044. Springer, 2013, pp. 773–789.

[201] K. R. M. Leino and M. Moskal, “Co-induction simply,” in Proceedings of the 19th

International Symposium on Formal Methods (FM’14), no. 8442. Springer, 2014, pp.
382–398.

[202] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies, “VCC: a practical system for verifying concurrent C,”
in Proceedings of the 22nd International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’09), vol. 5674. Springer, 2009, pp. 23–42.

230

[203] B. Jacobs, J. Smans, and F. Piessens, “A quick tour of the VeriFast program verifier,”
in Proceedings of the 8th Asian Symposium of Programming Languages and Systems
(APLAS’10), vol. 6461. Springer, 2010, pp. 304–311.

[204] D.-H. Chu, J. Jaffar, and M.-T. Trinh, “Automatic induction proofs of data-structures
in imperative programs,” in Proceedings of the 36th annual ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’15). ACM, 2015, pp.
457–466.

[205] H. Unno, S. Torii, and H. Sakamoto, “Automating induction for solving Horn clauses,”
in Proceedings of the 29th International Conference on Computer Aided Verification
(CAV’17), vol. 10427. Springer, 2017, pp. 571–591.

[206] Q.-T. Ta, T. C. Le, S.-C. Khoo, and W.-N. Chin, “Automated mutual induction proof
in separation logic,” Formal Aspects of Computing, vol. 31, no. 2, pp. 207–230, Apr.
2019.

[207] J. Brotherston, D. Distefano, and R. L. Petersen, “Automated cyclic entailment proofs
in separation logic,” in Proceedings of the 23rd International Conference on Automated
Deduction (CAV’11). Utah, USA: Springer, 2011, pp. 131–146.

[208] D. Baelde, D. Miller, and Z. Snow, “Focused inductive theorem proving,” in Proceed-
ings of the 5th International Joint Conference on Automated Reasoning (IJCAR’10).
Edinburgh, UK: Springer, 2010, pp. 278–292.

[209] X. Leroy, “The CompCert verified compiler, software and commented proof,” https:
//compcert.org/, Mar. 2020.

[210] G. Parthasarathy, P. Müller, and A. J. Summers, “Formally validating a practical
verification condition generator,” in Computer Aided Verification, A. Silva and K. R. M.
Leino, Eds. Cham: Springer International Publishing, 2021, pp. 704–727.

[211] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: a verified implementa-
tion of ML,” ACM SIGPLAN Notices, vol. 49, no. 1, pp. 179–191, 2014.

[212] R. Harper, D. MacQueen, and R. Milner, Standard ML. Edinburgh, UK:
Department of Computer Science, University of Edinburgh, 1986. [Online]. Available:
http://www.lfcs.inf.ed.ac.uk/reports/86/ECS-LFCS-86-2/

[213] K. Slind and M. Norrish, “A brief overview of HOL4,” in International Conference on
Theorem Proving in Higher Order Logics, Springer. Montreal, Canada: Springer-Verlag
Berlin Heidelberg, 2008, pp. 28–32.

[214] G. Roşu, S. Eker, P. Lincoln, and J. Meseguer, “Certifying and synthesizing membership
equational proofs,” in Proceedings of International Symposium of Formal Methods
Europe (FME’03), K. Araki, S. Gnesi, and D. Mandrioli, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 359–380.

231

https://compcert.org/
https://compcert.org/
http://www.lfcs.inf.ed.ac.uk/reports/86/ECS-LFCS-86-2/

[215] Q. Garchery, “A framework for proof-carrying logical transformations,” Electronic
Proceedings in Theoretical Computer Science, vol. 336, pp. 5–23, July 2021.

[216] J.-C. Filliâtre and A. Paskevich, “Why3 — where programs meet provers,” in Program-
ming Languages and Systems, M. Felleisen and P. Gardner, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 125–128.

[217] S. Wils and B. Jacobs, “Certifying C program correctness with respect to CompCert
with VeriFast,” 2021. [Online]. Available: https://arxiv.org/abs/2110.11034

[218] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens, “Verifast:
a powerful, sound, predictable, fast verifier for C and Java,” in NASA Formal Methods,
M. Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 41–55.

[219] S. Blazy and X. Leroy, “Mechanized semantics for the Clight subset of the C language,”
Journal of Automated Reasoning, vol. 43, no. 3, pp. 263–288, 2009.

[220] A. Ledein, V. Blot, and C. Dubois, “A semantics of K into Dedukti,” https://inria.hal.
science/hal-03895834/, Dec. 2022.

[221] D. Cousineau and G. Dowek, “Embedding pure type systems in the lambda-Pi-calculus
modulo,” in Typed Lambda Calculi and Applications, S. R. Della Rocca, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 102–117.

[222] G. C. Necula and P. Lee, “Proof generation in the Touchstone theorem prover,” in
Proceedings of the 17th International Conference on Automated Deduction, Springer.
Pittsburgh, Pennsylvania, USA: Springer-VerlagBerlin, Heidelberg, 2000, pp. 25–44.

[223] L. Babai, “Trading group theory for randomness,” in Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing. New York, NY, USA: Association
for Computing Machinery, 1985, pp. 421–429.

[224] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive
proof-systems,” in Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing. New York, NY, USA: Association for Computing Machinery, 1985, pp.
291–304.

[225] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems,” Journal of the ACM, vol. 38,
no. 3, pp. 690–728, July 1991.

[226] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: nearly practical verifiable
computation,” in IEEE Symposium on Security and Privacy, 2013, pp. 238–252.

[227] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transparent, and
post-quantum secure computational integrity,” IACR Cryptology ePrint Archive, p. 46,
2018.

232

https://arxiv.org/abs/2110.11034
https://inria.hal.science/hal-03895834/
https://inria.hal.science/hal-03895834/

[228] B. Bailey, “RISC Zero Metamath checker,” https://github.com/BoltonBailey/
risc0-metamath, 2023.

[229] J. Bruestle, P. Gafni, and the RISC Zero Team, “RISC Zero zkVM: scalable, transparent
arguments of RISC-V integrity,” 2023.

233

https://github.com/BoltonBailey/risc0-metamath
https://github.com/BoltonBailey/risc0-metamath

	Chapter 1 INTRODUCTION
	Chapter 2 PRELIMINARIES
	Basic Mathematics
	First-Order Logic
	First-Order Logic with Least Fixpoints
	Second-Order Logic
	Equational Specifications and Initial Algebra Semantics
	Separation Logic
	Modal Logic K
	Modal -Calculus
	Temporal Logics
	Infinite-trace LTL
	Finite-trace LTL
	CTL

	Dynamic Logic
	-Calculus
	Term-Generic First-Order Logic
	Matching Logic
	Matching logic syntax and semantics
	Important theories
	Matching logic proof system P

	Reachability Logic
	K Framework

	Chapter 3 TWO COMPLETENESS THEOREMS FOR MATCHING LOGIC
	Matching Logic Proof System H
	Soundness of H
	Important properties of H
	Relation to modal logic proof rules

	Definedness Completeness
	Local Completeness

	Chapter 4 FROM MATCHING LOGIC TO MATCHING -LOGIC
	Hints on Necessity of Extension
	Matching -Logic Syntax, Semantics, and Proof System
	Matching -logic syntax and semantics
	Matching -logic proof system H
	Basic properties about H

	Reduction to Monadic Second-Order Logic

	Chapter 5 EXPRESSIVE POWER
	Defining Recursive Symbols
	Defining FOL with Least Fixpoints
	Defining Separation Logic with Recursive Symbols
	Defining Equational Specifications
	Defining Initial Algebra Semantics
	Defining term algebras
	Defining initial algebras
	Deriving induction principles as matching -logic theorems

	Defining Second-Order Logic
	Defining powersets
	Defining monadic SOL
	Defining full SOL

	Defining Transition Systems
	Defining Modal -Calculus
	Defining Temporal Logics
	Defining infinite-trace LTL
	Defining finite-trace LTL
	Defining CTL
	Discussion

	Defining Dynamic Logic
	Defining Reachability Logic
	Defining -Calculus
	Defining the binder
	Model-theoretic conservativeness proof
	Proof-theoretic conservativeness proof
	Discussion

	Defining Term-Generic Logic
	Discussion
	Proofs
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Proposition 5.2
	Proof of Theorem 5.11
	Proof of Theorem 5.12
	Proof of Theorem 5.13
	Proof of Theorem 5.14
	Proof of Theorem 5.15

	Chapter 6 REASONING ABOUT FIXPOINTS IN MATCHING -LOGIC
	Overview
	Automated Proof Framework for Matching -Logic
	Fixpoint reasoning module
	Context reasoning module and contextual implication
	Frame reasoning module
	Framework description

	Examples
	A basic SL example
	A more complex SL example
	A SL example featuring mutual recursion
	An LTL example
	A verification example from RL

	Algorithms
	Top-level DFS proof search algorithm
	Context matching algorithm
	Pattern matching algorithm

	Evaluation

	Chapter 7 APPLICATIVE MATCHING -LOGIC (AML)
	AML as an Instance of Matching -Logic
	Defining Matching -Logic in AML
	Case Study: Defining Advanced Sort Structures in AML
	Defining subsorts
	Defining parametric sorts
	Defining function types
	Defining dependent types

	AML Proof Checker
	Metamath overview
	Main definitions
	Entire source code

	Chapter 8 PROOF-CERTIFYING PROGRAM EXECUTION
	Overview
	A Running Example
	Translating K to AML
	Generating Proofs for One-Step Executions
	Problem formulation
	Applying rewrite rules
	Applying simplification rules

	Evaluation

	Chapter 9 PROOF-CERTIFYING FORMAL VERIFICATION
	Overview
	Generating Proofs for Symbolic Execution
	Phase 1: Proving (Branchj,l) and (Remainderj)
	Phase 2: Proving (Stepj)
	Phase 3: Proving (Goal)

	Generating Proofs for Pattern Subsumption
	Generating Proofs for Coinduction
	Evaluation
	Discussion
	Trust base of proof checking
	Trust base of K
	Implementation
	Future directions

	Chapter 10 RELATED WORK
	Formal Semantics and Programming Language Frameworks
	Existing Approaches to Defining Binders
	Existing Approaches to Automated Fixpoint Reasoning
	Existing Approaches to Trustworthy Language Tools

	Chapter 11 CONCLUSION
	References

